PaddleClas/ppcls/modeling/architectures/shufflenet_v2.py

355 lines
12 KiB
Python

# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
from paddle.fluid.initializer import MSRA
import math
__all__ = [
"ShuffleNetV2_x0_25", "ShuffleNetV2_x0_33", "ShuffleNetV2_x0_5",
"ShuffleNetV2_x1_0", "ShuffleNetV2_x1_5", "ShuffleNetV2_x2_0",
"ShuffleNetV2_swish"
]
def channel_shuffle(x, groups):
batchsize, num_channels, height, width = x.shape[0], x.shape[1], x.shape[
2], x.shape[3]
channels_per_group = num_channels // groups
# reshape
x = fluid.layers.reshape(
x=x, shape=[batchsize, groups, channels_per_group, height, width])
x = fluid.layers.transpose(x=x, perm=[0, 2, 1, 3, 4])
# flatten
x = fluid.layers.reshape(
x=x, shape=[batchsize, num_channels, height, width])
return x
class ConvBNLayer(fluid.dygraph.Layer):
def __init__(self,
num_channels,
filter_size,
num_filters,
stride,
padding,
channels=None,
num_groups=1,
if_act=True,
act='relu',
name=None,
use_cudnn=True):
super(ConvBNLayer, self).__init__()
self._if_act = if_act
assert act in ['relu', 'swish'], \
"supported act are {} but your act is {}".format(
['relu', 'swish'], act)
self._act = act
self._conv = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=padding,
groups=num_groups,
act=None,
use_cudnn=use_cudnn,
param_attr=ParamAttr(
initializer=MSRA(), name=name + "_weights"),
bias_attr=False)
self._batch_norm = BatchNorm(
num_filters,
param_attr=ParamAttr(name=name + "_bn_scale"),
bias_attr=ParamAttr(name=name + "_bn_offset"),
moving_mean_name=name + "_bn_mean",
moving_variance_name=name + "_bn_variance")
def forward(self, inputs, if_act=True):
y = self._conv(inputs)
y = self._batch_norm(y)
if self._if_act:
y = fluid.layers.relu(
y) if self._act == 'relu' else fluid.layers.swish(y)
return y
class InvertedResidualUnit(fluid.dygraph.Layer):
def __init__(self,
num_channels,
num_filters,
stride,
benchmodel,
act='relu',
name=None):
super(InvertedResidualUnit, self).__init__()
assert stride in [1, 2], \
"supported stride are {} but your stride is {}".format([
1, 2], stride)
self.benchmodel = benchmodel
oup_inc = num_filters // 2
inp = num_channels
if benchmodel == 1:
self._conv_pw = ConvBNLayer(
num_channels=num_channels // 2,
num_filters=oup_inc,
filter_size=1,
stride=1,
padding=0,
num_groups=1,
if_act=True,
act=act,
name='stage_' + name + '_conv1')
self._conv_dw = ConvBNLayer(
num_channels=oup_inc,
num_filters=oup_inc,
filter_size=3,
stride=stride,
padding=1,
num_groups=oup_inc,
if_act=False,
act=act,
use_cudnn=False,
name='stage_' + name + '_conv2')
self._conv_linear = ConvBNLayer(
num_channels=oup_inc,
num_filters=oup_inc,
filter_size=1,
stride=1,
padding=0,
num_groups=1,
if_act=True,
act=act,
name='stage_' + name + '_conv3')
else:
# branch1
self._conv_dw_1 = ConvBNLayer(
num_channels=num_channels,
num_filters=inp,
filter_size=3,
stride=stride,
padding=1,
num_groups=inp,
if_act=False,
act=act,
use_cudnn=False,
name='stage_' + name + '_conv4')
self._conv_linear_1 = ConvBNLayer(
num_channels=inp,
num_filters=oup_inc,
filter_size=1,
stride=1,
padding=0,
num_groups=1,
if_act=True,
act=act,
name='stage_' + name + '_conv5')
# branch2
self._conv_pw_2 = ConvBNLayer(
num_channels=num_channels,
num_filters=oup_inc,
filter_size=1,
stride=1,
padding=0,
num_groups=1,
if_act=True,
act=act,
name='stage_' + name + '_conv1')
self._conv_dw_2 = ConvBNLayer(
num_channels=oup_inc,
num_filters=oup_inc,
filter_size=3,
stride=stride,
padding=1,
num_groups=oup_inc,
if_act=False,
act=act,
use_cudnn=False,
name='stage_' + name + '_conv2')
self._conv_linear_2 = ConvBNLayer(
num_channels=oup_inc,
num_filters=oup_inc,
filter_size=1,
stride=1,
padding=0,
num_groups=1,
if_act=True,
act=act,
name='stage_' + name + '_conv3')
def forward(self, inputs):
if self.benchmodel == 1:
x1, x2 = fluid.layers.split(
inputs,
num_or_sections=[inputs.shape[1] // 2, inputs.shape[1] // 2],
dim=1)
x2 = self._conv_pw(x2)
x2 = self._conv_dw(x2)
x2 = self._conv_linear(x2)
out = fluid.layers.concat([x1, x2], axis=1)
else:
x1 = self._conv_dw_1(inputs)
x1 = self._conv_linear_1(x1)
x2 = self._conv_pw_2(inputs)
x2 = self._conv_dw_2(x2)
x2 = self._conv_linear_2(x2)
out = fluid.layers.concat([x1, x2], axis=1)
return channel_shuffle(out, 2)
class ShuffleNet(fluid.dygraph.Layer):
def __init__(self, class_dim=1000, scale=1.0, act='relu'):
super(ShuffleNet, self).__init__()
self.scale = scale
self.class_dim = class_dim
stage_repeats = [4, 8, 4]
if scale == 0.25:
stage_out_channels = [-1, 24, 24, 48, 96, 512]
elif scale == 0.33:
stage_out_channels = [-1, 24, 32, 64, 128, 512]
elif scale == 0.5:
stage_out_channels = [-1, 24, 48, 96, 192, 1024]
elif scale == 1.0:
stage_out_channels = [-1, 24, 116, 232, 464, 1024]
elif scale == 1.5:
stage_out_channels = [-1, 24, 176, 352, 704, 1024]
elif scale == 2.0:
stage_out_channels = [-1, 24, 224, 488, 976, 2048]
else:
raise NotImplementedError("This scale size:[" + str(scale) +
"] is not implemented!")
# 1. conv1
self._conv1 = ConvBNLayer(
num_channels=3,
num_filters=stage_out_channels[1],
filter_size=3,
stride=2,
padding=1,
if_act=True,
act=act,
name='stage1_conv')
self._max_pool = Pool2D(
pool_type='max', pool_size=3, pool_stride=2, pool_padding=1)
# 2. bottleneck sequences
self._block_list = []
i = 1
in_c = int(32 * scale)
for idxstage in range(len(stage_repeats)):
numrepeat = stage_repeats[idxstage]
output_channel = stage_out_channels[idxstage + 2]
for i in range(numrepeat):
if i == 0:
block = self.add_sublayer(
str(idxstage + 2) + '_' + str(i + 1),
InvertedResidualUnit(
num_channels=stage_out_channels[idxstage + 1],
num_filters=output_channel,
stride=2,
benchmodel=2,
act=act,
name=str(idxstage + 2) + '_' + str(i + 1)))
self._block_list.append(block)
else:
block = self.add_sublayer(
str(idxstage + 2) + '_' + str(i + 1),
InvertedResidualUnit(
num_channels=output_channel,
num_filters=output_channel,
stride=1,
benchmodel=1,
act=act,
name=str(idxstage + 2) + '_' + str(i + 1)))
self._block_list.append(block)
# 3. last_conv
self._last_conv = ConvBNLayer(
num_channels=stage_out_channels[-2],
num_filters=stage_out_channels[-1],
filter_size=1,
stride=1,
padding=0,
if_act=True,
act=act,
name='conv5')
# 4. pool
self._pool2d_avg = Pool2D(pool_type='avg', global_pooling=True)
self._out_c = stage_out_channels[-1]
# 5. fc
self._fc = Linear(
stage_out_channels[-1],
class_dim,
param_attr=ParamAttr(name='fc6_weights'),
bias_attr=ParamAttr(name='fc6_offset'))
def forward(self, inputs):
y = self._conv1(inputs)
y = self._max_pool(y)
for inv in self._block_list:
y = inv(y)
y = self._last_conv(y)
y = self._pool2d_avg(y)
y = fluid.layers.reshape(y, shape=[-1, self._out_c])
y = self._fc(y)
return y
def ShuffleNetV2_x0_25(**args):
model = ShuffleNetV2(scale=0.25, **args)
return model
def ShuffleNetV2_x0_33(**args):
model = ShuffleNet(scale=0.33, **args)
return model
def ShuffleNetV2_x0_5(**args):
model = ShuffleNet(scale=0.5, **args)
return model
def ShuffleNetV2(**args):
model = ShuffleNet(scale=1.0, **args)
return model
def ShuffleNetV2_x1_5(**args):
model = ShuffleNet(scale=1.5, **args)
return model
def ShuffleNetV2_x2_0(**args):
model = ShuffleNet(scale=2.0, **args)
return model
def ShuffleNetV2_swish(**args):
model = ShuffleNet(scale=1.0, act='swish', **args)
return model