PaddleClas/ppcls/configs/Vehicle/ResNet50.yaml

135 lines
2.9 KiB
YAML

# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: "./output/"
device: "gpu"
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 160
print_batch_step: 10
use_visualdl: False
# used for static mode and model export
image_shape: [3, 224, 224]
save_inference_dir: "./inference"
# model architecture
Arch:
name: "RecModel"
infer_output_key: "features"
infer_add_softmax: False
Backbone:
name: "ResNet50_last_stage_stride1"
pretrained: True
BackboneStopLayer:
name: "adaptive_avg_pool2d_0"
Neck:
name: "VehicleNeck"
in_channels: 2048
out_channels: 512
Head:
name: "ArcMargin"
embedding_size: 512
class_num: 431
margin: 0.15
scale: 32
# loss function config for traing/eval process
Loss:
Train:
- CELoss:
weight: 1.0
- SupConLoss:
weight: 1.0
views: 2
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: Momentum
momentum: 0.9
lr:
name: MultiStepDecay
learning_rate: 0.01
milestones: [30, 60, 70, 80, 90, 100, 120, 140]
gamma: 0.5
verbose: False
last_epoch: -1
regularizer:
name: 'L2'
coeff: 0.0005
# data loader for train and eval
DataLoader:
Train:
dataset:
name: "CompCars"
image_root: "./dataset/CompCars/image/"
label_root: "./dataset/CompCars/label/"
bbox_crop: True
cls_label_path: "./dataset/CompCars/train_test_split/classification/train_label.txt"
transform_ops:
- ResizeImage:
size: 224
- RandFlipImage:
flip_code: 1
- AugMix:
prob: 0.5
- NormalizeImage:
scale: 0.00392157
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- RandomErasing:
EPSILON: 0.5
sl: 0.02
sh: 0.4
r1: 0.3
mean: [0., 0., 0.]
sampler:
name: DistributedRandomIdentitySampler
batch_size: 128
num_instances: 2
drop_last: False
shuffle: True
loader:
num_workers: 8
use_shared_memory: True
Eval:
dataset:
name: "CompCars"
image_root: "./dataset/CompCars/image/"
label_root: "./dataset/CompCars/label/"
cls_label_path: "./dataset/CompCars/train_test_split/classification/test_label.txt"
bbox_crop: True
transform_ops:
- ResizeImage:
size: 224
- NormalizeImage:
scale: 0.00392157
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: False
shuffle: False
loader:
num_workers: 8
use_shared_memory: True
Metric:
Train:
- TopkAcc:
topk: [1, 5]
Eval:
- TopkAcc:
topk: [1, 5]