PaddleClas/tests/prepare.sh

61 lines
1.7 KiB
Bash

#!/bin/bash
FILENAME=$1
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer']
MODE=$2
dataline=$(cat ${FILENAME})
# parser params
IFS=$'\n'
lines=(${dataline})
function func_parser_value(){
strs=$1
IFS=":"
array=(${strs})
if [ ${#array[*]} = 2 ]; then
echo ${array[1]}
else
IFS="|"
tmp="${array[1]}:${array[2]}"
echo ${tmp}
fi
}
model_name=$(func_parser_value "${lines[1]}")
inference_model_url=$(func_parser_value "${lines[35]}")
if [ ${MODE} = "lite_train_infer" ] || [ ${MODE} = "whole_infer" ];then
# pretrain lite train data
cd dataset
rm -rf ILSVRC2012
wget -nc https://paddle-imagenet-models-name.bj.bcebos.com/data/whole_chain/whole_chain_little_train.tar
tar xf whole_chain_little_train.tar
ln -s whole_chain_little_train ILSVRC2012
cd ILSVRC2012
mv train.txt train_list.txt
mv val.txt val_list.txt
cd ../../
elif [ ${MODE} = "infer" ];then
# download data
cd dataset
rm -rf ILSVRC2012
wget -nc https://paddle-imagenet-models-name.bj.bcebos.com/data/whole_chain/whole_chain_infer.tar
tar xf whole_chain_infer.tar
ln -s whole_chain_infer ILSVRC2012
cd ILSVRC2012
mv val.txt val_list.txt
cd ../../
# download inference model
eval "wget -nc $inference_model_url"
tar xf "${model_name}_inference.tar"
elif [ ${MODE} = "whole_train_infer" ];then
cd dataset
rm -rf ILSVRC2012
wget -nc https://paddle-imagenet-models-name.bj.bcebos.com/data/whole_chain/whole_chain_CIFAR100.tar
tar xf whole_chain_CIFAR100.tar
ln -s whole_chain_CIFAR100 ILSVRC2012
cd ILSVRC2012
mv train.txt train_list.txt
mv val.txt val_list.txt
cd ../../
fi