203 lines
7.7 KiB
Python
203 lines
7.7 KiB
Python
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from collections import defaultdict
|
|
import copy
|
|
import paddle
|
|
from paddle import nn
|
|
from paddle.nn import functional as F
|
|
from ..legendary_models.resnet import ResNet50, MODEL_URLS, _load_pretrained
|
|
|
|
__all__ = [
|
|
"ResNet50_last_stage_stride1", "ResNet50_adaptive_max_pool2d",
|
|
'ResNet50_metabin'
|
|
]
|
|
|
|
|
|
def ResNet50_last_stage_stride1(pretrained=False, use_ssld=False, **kwargs):
|
|
def replace_function(conv, pattern):
|
|
new_conv = nn.Conv2D(
|
|
in_channels=conv._in_channels,
|
|
out_channels=conv._out_channels,
|
|
kernel_size=conv._kernel_size,
|
|
stride=1,
|
|
padding=conv._padding,
|
|
groups=conv._groups,
|
|
bias_attr=conv._bias_attr)
|
|
return new_conv
|
|
|
|
pattern = ["blocks[13].conv1.conv", "blocks[13].short.conv"]
|
|
model = ResNet50(pretrained=False, use_ssld=use_ssld, **kwargs)
|
|
model.upgrade_sublayer(pattern, replace_function)
|
|
_load_pretrained(pretrained, model, MODEL_URLS["ResNet50"], use_ssld)
|
|
return model
|
|
|
|
|
|
def ResNet50_adaptive_max_pool2d(pretrained=False, use_ssld=False, **kwargs):
|
|
def replace_function(pool, pattern):
|
|
new_pool = nn.AdaptiveMaxPool2D(output_size=1)
|
|
return new_pool
|
|
|
|
pattern = ["avg_pool"]
|
|
model = ResNet50(pretrained=False, use_ssld=use_ssld, **kwargs)
|
|
model.upgrade_sublayer(pattern, replace_function)
|
|
_load_pretrained(pretrained, model, MODEL_URLS["ResNet50"], use_ssld)
|
|
return model
|
|
|
|
|
|
def ResNet50_metabin(pretrained=False,
|
|
use_ssld=False,
|
|
bias_lr_factor=1.0,
|
|
**kwargs):
|
|
"""
|
|
ResNet50 which replaces all `bn` layers with MetaBIN
|
|
reference: https://arxiv.org/abs/2011.14670
|
|
"""
|
|
|
|
class BINGate(nn.Layer):
|
|
def __init__(self, num_features):
|
|
super().__init__()
|
|
self.gate = self.create_parameter(
|
|
shape=[num_features],
|
|
default_initializer=nn.initializer.Constant(1.0))
|
|
self.add_parameter("gate", self.gate)
|
|
|
|
def forward(self, opt={}):
|
|
flag_update = 'lr_gate' in opt and \
|
|
opt.get('enable_inside_update', False)
|
|
if flag_update and self.gate.grad is not None: # update gate
|
|
lr = opt['lr_gate'] * self.gate.optimize_attr.get(
|
|
'learning_rate', 1.0)
|
|
gate = self.gate - lr * self.gate.grad
|
|
gate.clip_(min=0, max=1)
|
|
else:
|
|
gate = self.gate
|
|
return gate
|
|
|
|
def clip_gate(self):
|
|
self.gate.set_value(self.gate.clip(0, 1))
|
|
|
|
class MetaBN(nn.BatchNorm2D):
|
|
def forward(self, inputs, opt={}):
|
|
mode = opt.get("bn_mode", "general") if self.training else "eval"
|
|
if mode == "general": # update, but not apply running_mean/var
|
|
result = F.batch_norm(inputs, self._mean, self._variance,
|
|
self.weight, self.bias, self.training,
|
|
self._momentum, self._epsilon)
|
|
elif mode == "hold": # not update, not apply running_mean/var
|
|
result = F.batch_norm(
|
|
inputs,
|
|
paddle.mean(
|
|
inputs, axis=(0, 2, 3)),
|
|
paddle.var(inputs, axis=(0, 2, 3)),
|
|
self.weight,
|
|
self.bias,
|
|
self.training,
|
|
self._momentum,
|
|
self._epsilon)
|
|
elif mode == "eval": # fix and apply running_mean/var,
|
|
if self._mean is None:
|
|
result = F.batch_norm(
|
|
inputs,
|
|
paddle.mean(
|
|
inputs, axis=(0, 2, 3)),
|
|
paddle.var(inputs, axis=(0, 2, 3)),
|
|
self.weight,
|
|
self.bias,
|
|
True,
|
|
self._momentum,
|
|
self._epsilon)
|
|
else:
|
|
result = F.batch_norm(inputs, self._mean, self._variance,
|
|
self.weight, self.bias, False,
|
|
self._momentum, self._epsilon)
|
|
return result
|
|
|
|
class MetaBIN(nn.Layer):
|
|
"""
|
|
MetaBIN (Meta Batch-Instance Normalization)
|
|
reference: https://arxiv.org/abs/2011.14670
|
|
"""
|
|
|
|
def __init__(self, num_features):
|
|
super().__init__()
|
|
self.batch_norm = MetaBN(
|
|
num_features=num_features, use_global_stats=True)
|
|
self.instance_norm = nn.InstanceNorm2D(num_features=num_features)
|
|
self.gate = BINGate(num_features=num_features)
|
|
self.opt = defaultdict()
|
|
|
|
def forward(self, inputs):
|
|
out_bn = self.batch_norm(inputs, self.opt)
|
|
out_in = self.instance_norm(inputs)
|
|
gate = self.gate(self.opt)
|
|
gate = gate.unsqueeze([0, -1, -1])
|
|
out = out_bn * gate + out_in * (1 - gate)
|
|
return out
|
|
|
|
def reset_opt(self):
|
|
self.opt = defaultdict()
|
|
|
|
def setup_opt(self, opt):
|
|
"""
|
|
Arg:
|
|
opt (dict): Optional setting to change the behavior of MetaBIN during training.
|
|
It includes three settings which are `enable_inside_update`, `lr_gate` and `bn_mode`.
|
|
"""
|
|
self.check_opt(opt)
|
|
self.opt = copy.deepcopy(opt)
|
|
|
|
@classmethod
|
|
def check_opt(cls, opt):
|
|
assert isinstance(opt, dict), \
|
|
TypeError('Got the wrong type of `opt`. Please use `dict` type.')
|
|
|
|
if opt.get('enable_inside_update', False) and 'lr_gate' not in opt:
|
|
raise RuntimeError('Missing `lr_gate` in opt.')
|
|
|
|
assert isinstance(opt.get('lr_gate', 1.0), float), \
|
|
TypeError('Got the wrong type of `lr_gate`. Please use `float` type.')
|
|
assert isinstance(opt.get('enable_inside_update', True), bool), \
|
|
TypeError('Got the wrong type of `enable_inside_update`. Please use `bool` type.')
|
|
assert opt.get('bn_mode', "general") in ["general", "hold", "eval"], \
|
|
TypeError('Got the wrong value of `bn_mode`.')
|
|
|
|
def bn2metabin(bn, pattern):
|
|
metabin = MetaBIN(bn.weight.shape[0])
|
|
return metabin
|
|
|
|
def setup_optimize_attr(model, bias_lr_factor):
|
|
for name, params in model.named_parameters():
|
|
if params.stop_gradient:
|
|
continue
|
|
if "bias" in name:
|
|
params.optimize_attr['learning_rate'] = bias_lr_factor
|
|
|
|
stride_list = [2, 2, 2, 2, 1]
|
|
|
|
pattern = []
|
|
pattern.extend(["blocks[{}].conv{}.bn".format(i, j) \
|
|
for i in range(16) for j in range(3)])
|
|
pattern.extend(["blocks[{}].short.bn".format(i) for i in [0, 3, 7, 13]])
|
|
pattern.append("stem[0].bn")
|
|
|
|
model = ResNet50(
|
|
pretrained=False, use_ssld=use_ssld, stride_list=stride_list, **kwargs)
|
|
|
|
model.upgrade_sublayer(pattern, bn2metabin)
|
|
setup_optimize_attr(model=model, bias_lr_factor=bias_lr_factor)
|
|
|
|
_load_pretrained(pretrained, model, MODEL_URLS["ResNet50"], use_ssld)
|
|
return model
|