PaddleClas/ppcls/arch/backbone/variant_models/resnet_variant.py

203 lines
7.7 KiB
Python

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import defaultdict
import copy
import paddle
from paddle import nn
from paddle.nn import functional as F
from ..legendary_models.resnet import ResNet50, MODEL_URLS, _load_pretrained
__all__ = [
"ResNet50_last_stage_stride1", "ResNet50_adaptive_max_pool2d",
'ResNet50_metabin'
]
def ResNet50_last_stage_stride1(pretrained=False, use_ssld=False, **kwargs):
def replace_function(conv, pattern):
new_conv = nn.Conv2D(
in_channels=conv._in_channels,
out_channels=conv._out_channels,
kernel_size=conv._kernel_size,
stride=1,
padding=conv._padding,
groups=conv._groups,
bias_attr=conv._bias_attr)
return new_conv
pattern = ["blocks[13].conv1.conv", "blocks[13].short.conv"]
model = ResNet50(pretrained=False, use_ssld=use_ssld, **kwargs)
model.upgrade_sublayer(pattern, replace_function)
_load_pretrained(pretrained, model, MODEL_URLS["ResNet50"], use_ssld)
return model
def ResNet50_adaptive_max_pool2d(pretrained=False, use_ssld=False, **kwargs):
def replace_function(pool, pattern):
new_pool = nn.AdaptiveMaxPool2D(output_size=1)
return new_pool
pattern = ["avg_pool"]
model = ResNet50(pretrained=False, use_ssld=use_ssld, **kwargs)
model.upgrade_sublayer(pattern, replace_function)
_load_pretrained(pretrained, model, MODEL_URLS["ResNet50"], use_ssld)
return model
def ResNet50_metabin(pretrained=False,
use_ssld=False,
bias_lr_factor=1.0,
**kwargs):
"""
ResNet50 which replaces all `bn` layers with MetaBIN
reference: https://arxiv.org/abs/2011.14670
"""
class BINGate(nn.Layer):
def __init__(self, num_features):
super().__init__()
self.gate = self.create_parameter(
shape=[num_features],
default_initializer=nn.initializer.Constant(1.0))
self.add_parameter("gate", self.gate)
def forward(self, opt={}):
flag_update = 'lr_gate' in opt and \
opt.get('enable_inside_update', False)
if flag_update and self.gate.grad is not None: # update gate
lr = opt['lr_gate'] * self.gate.optimize_attr.get(
'learning_rate', 1.0)
gate = self.gate - lr * self.gate.grad
gate.clip_(min=0, max=1)
else:
gate = self.gate
return gate
def clip_gate(self):
self.gate.set_value(self.gate.clip(0, 1))
class MetaBN(nn.BatchNorm2D):
def forward(self, inputs, opt={}):
mode = opt.get("bn_mode", "general") if self.training else "eval"
if mode == "general": # update, but not apply running_mean/var
result = F.batch_norm(inputs, self._mean, self._variance,
self.weight, self.bias, self.training,
self._momentum, self._epsilon)
elif mode == "hold": # not update, not apply running_mean/var
result = F.batch_norm(
inputs,
paddle.mean(
inputs, axis=(0, 2, 3)),
paddle.var(inputs, axis=(0, 2, 3)),
self.weight,
self.bias,
self.training,
self._momentum,
self._epsilon)
elif mode == "eval": # fix and apply running_mean/var,
if self._mean is None:
result = F.batch_norm(
inputs,
paddle.mean(
inputs, axis=(0, 2, 3)),
paddle.var(inputs, axis=(0, 2, 3)),
self.weight,
self.bias,
True,
self._momentum,
self._epsilon)
else:
result = F.batch_norm(inputs, self._mean, self._variance,
self.weight, self.bias, False,
self._momentum, self._epsilon)
return result
class MetaBIN(nn.Layer):
"""
MetaBIN (Meta Batch-Instance Normalization)
reference: https://arxiv.org/abs/2011.14670
"""
def __init__(self, num_features):
super().__init__()
self.batch_norm = MetaBN(
num_features=num_features, use_global_stats=True)
self.instance_norm = nn.InstanceNorm2D(num_features=num_features)
self.gate = BINGate(num_features=num_features)
self.opt = defaultdict()
def forward(self, inputs):
out_bn = self.batch_norm(inputs, self.opt)
out_in = self.instance_norm(inputs)
gate = self.gate(self.opt)
gate = gate.unsqueeze([0, -1, -1])
out = out_bn * gate + out_in * (1 - gate)
return out
def reset_opt(self):
self.opt = defaultdict()
def setup_opt(self, opt):
"""
Arg:
opt (dict): Optional setting to change the behavior of MetaBIN during training.
It includes three settings which are `enable_inside_update`, `lr_gate` and `bn_mode`.
"""
self.check_opt(opt)
self.opt = copy.deepcopy(opt)
@classmethod
def check_opt(cls, opt):
assert isinstance(opt, dict), \
TypeError('Got the wrong type of `opt`. Please use `dict` type.')
if opt.get('enable_inside_update', False) and 'lr_gate' not in opt:
raise RuntimeError('Missing `lr_gate` in opt.')
assert isinstance(opt.get('lr_gate', 1.0), float), \
TypeError('Got the wrong type of `lr_gate`. Please use `float` type.')
assert isinstance(opt.get('enable_inside_update', True), bool), \
TypeError('Got the wrong type of `enable_inside_update`. Please use `bool` type.')
assert opt.get('bn_mode', "general") in ["general", "hold", "eval"], \
TypeError('Got the wrong value of `bn_mode`.')
def bn2metabin(bn, pattern):
metabin = MetaBIN(bn.weight.shape[0])
return metabin
def setup_optimize_attr(model, bias_lr_factor):
for name, params in model.named_parameters():
if params.stop_gradient:
continue
if "bias" in name:
params.optimize_attr['learning_rate'] = bias_lr_factor
stride_list = [2, 2, 2, 2, 1]
pattern = []
pattern.extend(["blocks[{}].conv{}.bn".format(i, j) \
for i in range(16) for j in range(3)])
pattern.extend(["blocks[{}].short.bn".format(i) for i in [0, 3, 7, 13]])
pattern.append("stem[0].bn")
model = ResNet50(
pretrained=False, use_ssld=use_ssld, stride_list=stride_list, **kwargs)
model.upgrade_sublayer(pattern, bn2metabin)
setup_optimize_attr(model=model, bias_lr_factor=bias_lr_factor)
_load_pretrained(pretrained, model, MODEL_URLS["ResNet50"], use_ssld)
return model