PaddleClas/hubconf.py

182 lines
4.9 KiB
Python

dependencies = ['paddle', 'numpy']
import paddle
from ppcls.modeling.architectures import alexnet as _alexnet
from ppcls.modeling.architectures import vgg as _vgg
from ppcls.modeling.architectures import resnet as _resnet
# _checkpoints = {
# 'ResNet18': 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_pretrained.pdparams',
# 'ResNet34': 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_pretrained.pdparams',
# }
def _load_pretrained_urls():
'''Load pretrained model parameters url from README.md
'''
import re
from collections import OrderedDict
with open('./README.md', 'r') as f:
lines = f.readlines()
lines = [lin for lin in lines if lin.strip().startswith('|') and 'Download link' in lin]
urls = OrderedDict()
for lin in lines:
try:
name = re.findall(r'\|(.*?)\|', lin)[0].strip().replace('<br>', '')
url = re.findall(r'\((.*?)\)', lin)[-1].strip()
if name in url:
urls[name] = url
except:
pass
return urls
_checkpoints = _load_pretrained_urls()
def AlexNet(**kwargs):
'''AlexNet
'''
pretrained = kwargs.pop('pretrained', False)
model = _alexnet.AlexNet(**kwargs)
if pretrained:
assert 'AlexNet' in _checkpoints, 'Not provide `AlexNet` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['AlexNet'])
model.set_state_dict(paddle.load(path))
return model
def VGG11(**kwargs):
'''VGG11
'''
pretrained = kwargs.pop('pretrained', False)
model = _vgg.VGG11(**kwargs)
if pretrained:
assert 'VGG11' in _checkpoints, 'Not provide `VGG11` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['VGG11'])
model.set_state_dict(paddle.load(path))
return model
def VGG13(**kwargs):
'''VGG13
'''
pretrained = kwargs.pop('pretrained', False)
model = _vgg.VGG13(**kwargs)
if pretrained:
assert 'VGG13' in _checkpoints, 'Not provide `VGG13` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['VGG13'])
model.set_state_dict(paddle.load(path))
return model
def VGG16(**kwargs):
'''VGG16
'''
pretrained = kwargs.pop('pretrained', False)
model = _vgg.VGG16(**kwargs)
if pretrained:
assert 'VGG16' in _checkpoints, 'Not provide `VGG16` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['VGG16'])
model.set_state_dict(paddle.load(path))
return model
def VGG19(**kwargs):
'''VGG19
'''
pretrained = kwargs.pop('pretrained', False)
model = _vgg.VGG19(**kwargs)
if pretrained:
assert 'VGG19' in _checkpoints, 'Not provide `VGG19` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['VGG19'])
model.set_state_dict(paddle.load(path))
return model
def ResNet18(**kwargs):
'''ResNet18
'''
pretrained = kwargs.pop('pretrained', False)
model = _resnet.ResNet18(**kwargs)
if pretrained:
assert 'ResNet18' in _checkpoints, 'Not provide `ResNet18` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['ResNet18'])
model.set_state_dict(paddle.load(path))
return model
def ResNet34(**kwargs):
'''ResNet34
'''
pretrained = kwargs.pop('pretrained', False)
model = _resnet.ResNet34(**kwargs)
if pretrained:
assert 'ResNet34' in _checkpoints, 'Not provide `ResNet34` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['ResNet34'])
model.set_state_dict(paddle.load(path))
return model
def ResNet50(**kwargs):
'''ResNet50
'''
pretrained = kwargs.pop('pretrained', False)
model = _resnet.ResNet50(**kwargs)
if pretrained:
assert 'ResNet50' in _checkpoints, 'Not provide `ResNet50` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['ResNet50'])
model.set_state_dict(paddle.load(path))
return model
def ResNet101(**kwargs):
'''ResNet101
'''
pretrained = kwargs.pop('pretrained', False)
model = _resnet.ResNet101(**kwargs)
if pretrained:
assert 'ResNet101' in _checkpoints, 'Not provide `ResNet101` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['ResNet101'])
model.set_state_dict(paddle.load(path))
return model
def ResNet152(**kwargs):
'''ResNet152
'''
pretrained = kwargs.pop('pretrained', False)
model = _resnet.ResNet152(**kwargs)
if pretrained:
assert 'ResNet152' in _checkpoints, 'Not provide `ResNet152` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['ResNet152'])
model.set_state_dict(paddle.load(path))
return model