155 lines
4.9 KiB
Python
155 lines
4.9 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
import argparse
|
|
import utils
|
|
import shutil
|
|
import os
|
|
import sys
|
|
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
|
sys.path.append(__dir__)
|
|
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
|
|
|
|
from ppcls.utils.save_load import load_dygraph_pretrain
|
|
from ppcls.modeling import architectures
|
|
|
|
import paddle
|
|
from paddle.distributed import ParallelEnv
|
|
import paddle.nn.functional as F
|
|
|
|
|
|
def parse_args():
|
|
def str2bool(v):
|
|
return v.lower() in ("true", "t", "1")
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("-i", "--image_file", type=str)
|
|
parser.add_argument("-m", "--model", type=str)
|
|
parser.add_argument("-p", "--pretrained_model", type=str)
|
|
parser.add_argument("--class_num", type=int, default=1000)
|
|
parser.add_argument("--use_gpu", type=str2bool, default=True)
|
|
parser.add_argument(
|
|
"--load_static_weights",
|
|
type=str2bool,
|
|
default=False,
|
|
help='Whether to load the pretrained weights saved in static mode')
|
|
|
|
# parameters for pre-label the images
|
|
parser.add_argument(
|
|
"--pre_label_image",
|
|
type=str2bool,
|
|
default=False,
|
|
help="Whether to pre-label the images using the loaded weights")
|
|
parser.add_argument("--pre_label_out_idr", type=str, default=None)
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
def create_operators():
|
|
size = 224
|
|
img_mean = [0.485, 0.456, 0.406]
|
|
img_std = [0.229, 0.224, 0.225]
|
|
img_scale = 1.0 / 255.0
|
|
|
|
decode_op = utils.DecodeImage()
|
|
resize_op = utils.ResizeImage(resize_short=256)
|
|
crop_op = utils.CropImage(size=(size, size))
|
|
normalize_op = utils.NormalizeImage(
|
|
scale=img_scale, mean=img_mean, std=img_std)
|
|
totensor_op = utils.ToTensor()
|
|
|
|
return [decode_op, resize_op, crop_op, normalize_op, totensor_op]
|
|
|
|
|
|
def preprocess(fname, ops):
|
|
data = open(fname, 'rb').read()
|
|
for op in ops:
|
|
data = op(data)
|
|
return data
|
|
|
|
|
|
def postprocess(outputs, topk=5):
|
|
output = outputs[0]
|
|
prob = np.array(output).flatten()
|
|
index = prob.argsort(axis=0)[-topk:][::-1].astype('int32')
|
|
return zip(index, prob[index])
|
|
|
|
|
|
def get_image_list(img_file):
|
|
imgs_lists = []
|
|
if img_file is None or not os.path.exists(img_file):
|
|
raise Exception("not found any img file in {}".format(img_file))
|
|
|
|
img_end = ['jpg', 'png', 'jpeg', 'JPEG', 'JPG', 'bmp']
|
|
if os.path.isfile(img_file) and img_file.split('.')[-1] in img_end:
|
|
imgs_lists.append(img_file)
|
|
elif os.path.isdir(img_file):
|
|
for single_file in os.listdir(img_file):
|
|
if single_file.split('.')[-1] in img_end:
|
|
imgs_lists.append(os.path.join(img_file, single_file))
|
|
if len(imgs_lists) == 0:
|
|
raise Exception("not found any img file in {}".format(img_file))
|
|
return imgs_lists
|
|
|
|
|
|
def save_prelabel_results(class_id, input_filepath, output_idr):
|
|
output_dir = os.path.join(output_idr, str(class_id))
|
|
if not os.path.isdir(output_dir):
|
|
os.makedirs(output_dir)
|
|
shutil.copy(input_filepath, output_dir)
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
operators = create_operators()
|
|
# assign the place
|
|
place = 'gpu:{}'.format(ParallelEnv().dev_id) if args.use_gpu else 'cpu'
|
|
place = paddle.set_device(place)
|
|
|
|
net = architectures.__dict__[args.model](class_dim=args.class_num)
|
|
load_dygraph_pretrain(net, args.pretrained_model, args.load_static_weights)
|
|
image_list = get_image_list(args.image_file)
|
|
for idx, filename in enumerate(image_list):
|
|
data = preprocess(filename, operators)
|
|
data = np.expand_dims(data, axis=0)
|
|
data = paddle.to_tensor(data)
|
|
net.eval()
|
|
outputs = net(data)
|
|
if args.model == "GoogLeNet":
|
|
outputs = outputs[0]
|
|
outputs = F.softmax(outputs)
|
|
outputs = outputs.numpy()
|
|
probs = postprocess(outputs)
|
|
|
|
top1_class_id = 0
|
|
rank = 1
|
|
print("Current image file: {}".format(filename))
|
|
for idx, prob in probs:
|
|
print("\ttop{:d}, class id: {:d}, probability: {:.4f}".format(
|
|
rank, idx, prob))
|
|
if rank == 1:
|
|
top1_class_id = idx
|
|
rank += 1
|
|
|
|
if args.pre_label_image:
|
|
save_prelabel_results(top1_class_id, filename,
|
|
args.pre_label_out_idr)
|
|
|
|
return
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|