PaddleClas/deploy/python/predict_system.py

87 lines
2.9 KiB
Python

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.abspath(os.path.join(__dir__, '../')))
import copy
import cv2
import numpy as np
from python.predict_rec import RecPredictor
from python.predict_det import DetPredictor
from vector_search import Graph_Index
from utils import logger
from utils import config
from utils.get_image_list import get_image_list
from utils.draw_bbox import draw_bbox_results
class SystemPredictor(object):
def __init__(self, config):
self.config = config
self.rec_predictor = RecPredictor(config)
self.det_predictor = DetPredictor(config)
assert 'IndexProcess' in config.keys(), "Index config not found ... "
self.return_k = self.config['IndexProcess']['return_k']
self.search_budget = self.config['IndexProcess']['search_budget']
self.Searcher = Graph_Index(
dist_type=config['IndexProcess']['dist_type'])
self.Searcher.load(config['IndexProcess']['index_path'])
def predict(self, img):
output = []
results = self.det_predictor.predict(img)
for result in results:
preds = {}
xmin, ymin, xmax, ymax = result["bbox"].astype("int")
crop_img = img[ymin:ymax, xmin:xmax, :].copy()
rec_results = self.rec_predictor.predict(crop_img)
#preds["feature"] = rec_results
preds["bbox"] = [xmin, ymin, xmax, ymax]
scores, docs = self.Searcher.search(
query=rec_results,
return_k=self.return_k,
search_budget=self.search_budget)
preds["rec_docs"] = docs
preds["rec_scores"] = scores
output.append(preds)
return output
def main(config):
system_predictor = SystemPredictor(config)
image_list = get_image_list(config["Global"]["infer_imgs"])
assert config["Global"]["batch_size"] == 1
for idx, image_file in enumerate(image_list):
img = cv2.imread(image_file)[:, :, ::-1]
output = system_predictor.predict(img)
draw_bbox_results(img[:, :, ::-1], output, image_file)
print(output)
return
if __name__ == "__main__":
args = config.parse_args()
config = config.get_config(args.config, overrides=args.override, show=True)
main(config)