PaddleClas/ppcls/loss/wslloss.py

67 lines
2.5 KiB
Python

# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
class WSLLoss(nn.Layer):
"""
Weighted Soft Labels Loss
paper: https://arxiv.org/pdf/2102.00650.pdf
code reference: https://github.com/bellymonster/Weighted-Soft-Label-Distillation
"""
def __init__(self, temperature=2.0, use_target_as_gt=False):
super().__init__()
self.temperature = temperature
self.use_target_as_gt = use_target_as_gt
def forward(self, logits_student, logits_teacher, target=None):
"""Compute weighted soft labels loss.
Args:
logits_student: student's logits with shape (batch_size, num_classes)
logits_teacher: teacher's logits with shape (batch_size, num_classes)
target: ground truth labels with shape (batch_size)
"""
if target is None or self.use_target_as_gt:
target = logits_teacher.argmax(axis=-1)
target = F.one_hot(
target.reshape([-1]), num_classes=logits_student[0].shape[0])
s_input_for_softmax = logits_student / self.temperature
t_input_for_softmax = logits_teacher / self.temperature
ce_loss_s = -paddle.sum(target *
F.log_softmax(logits_student.detach()),
axis=1)
ce_loss_t = -paddle.sum(target *
F.log_softmax(logits_teacher.detach()),
axis=1)
ratio = ce_loss_s / (ce_loss_t + 1e-7)
ratio = paddle.maximum(ratio, paddle.zeros_like(ratio))
kd_loss = -paddle.sum(F.softmax(t_input_for_softmax) *
F.log_softmax(s_input_for_softmax),
axis=1)
weight = 1 - paddle.exp(-ratio)
weighted_kd_loss = (self.temperature**2) * paddle.mean(kd_loss *
weight)
return weighted_kd_loss