PaddleClas/ppcls/modeling/architectures/dpn.py

426 lines
12 KiB
Python

# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import sys
import paddle
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2d, Pool2D, BatchNorm, Linear
from paddle.nn.initializer import Uniform
import math
__all__ = [
"DPN",
"DPN68",
"DPN92",
"DPN98",
"DPN107",
"DPN131",
]
class ConvBNLayer(nn.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
pad=0,
groups=1,
act="relu",
name=None):
super(ConvBNLayer, self).__init__()
self._conv = Conv2d(
in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=pad,
groups=groups,
weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
self._batch_norm = BatchNorm(
num_filters,
act=act,
param_attr=ParamAttr(name=name + '_bn_scale'),
bias_attr=ParamAttr(name + '_bn_offset'),
moving_mean_name=name + '_bn_mean',
moving_variance_name=name + '_bn_variance')
def forward(self, input):
y = self._conv(input)
y = self._batch_norm(y)
return y
class BNACConvLayer(nn.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
pad=0,
groups=1,
act="relu",
name=None):
super(BNACConvLayer, self).__init__()
self.num_channels = num_channels
self._batch_norm = BatchNorm(
num_channels,
act=act,
param_attr=ParamAttr(name=name + '_bn_scale'),
bias_attr=ParamAttr(name + '_bn_offset'),
moving_mean_name=name + '_bn_mean',
moving_variance_name=name + '_bn_variance')
self._conv = Conv2d(
in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=pad,
groups=groups,
weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
def forward(self, input):
y = self._batch_norm(input)
y = self._conv(y)
return y
class DualPathFactory(nn.Layer):
def __init__(self,
num_channels,
num_1x1_a,
num_3x3_b,
num_1x1_c,
inc,
G,
_type='normal',
name=None):
super(DualPathFactory, self).__init__()
self.num_1x1_c = num_1x1_c
self.inc = inc
self.name = name
kw = 3
kh = 3
pw = (kw - 1) // 2
ph = (kh - 1) // 2
# type
if _type == 'proj':
key_stride = 1
self.has_proj = True
elif _type == 'down':
key_stride = 2
self.has_proj = True
elif _type == 'normal':
key_stride = 1
self.has_proj = False
else:
print("not implemented now!!!")
sys.exit(1)
data_in_ch = sum(num_channels) if isinstance(num_channels,
list) else num_channels
if self.has_proj:
self.c1x1_w_func = BNACConvLayer(
num_channels=data_in_ch,
num_filters=num_1x1_c + 2 * inc,
filter_size=(1, 1),
pad=(0, 0),
stride=(key_stride, key_stride),
name=name + "_match")
self.c1x1_a_func = BNACConvLayer(
num_channels=data_in_ch,
num_filters=num_1x1_a,
filter_size=(1, 1),
pad=(0, 0),
name=name + "_conv1")
self.c3x3_b_func = BNACConvLayer(
num_channels=num_1x1_a,
num_filters=num_3x3_b,
filter_size=(kw, kh),
pad=(pw, ph),
stride=(key_stride, key_stride),
groups=G,
name=name + "_conv2")
self.c1x1_c_func = BNACConvLayer(
num_channels=num_3x3_b,
num_filters=num_1x1_c + inc,
filter_size=(1, 1),
pad=(0, 0),
name=name + "_conv3")
def forward(self, input):
# PROJ
if isinstance(input, list):
data_in = paddle.concat([input[0], input[1]], axis=1)
else:
data_in = input
if self.has_proj:
c1x1_w = self.c1x1_w_func(data_in)
data_o1, data_o2 = paddle.split(
c1x1_w, num_or_sections=[self.num_1x1_c, 2 * self.inc], axis=1)
else:
data_o1 = input[0]
data_o2 = input[1]
c1x1_a = self.c1x1_a_func(data_in)
c3x3_b = self.c3x3_b_func(c1x1_a)
c1x1_c = self.c1x1_c_func(c3x3_b)
c1x1_c1, c1x1_c2 = paddle.split(
c1x1_c, num_or_sections=[self.num_1x1_c, self.inc], axis=1)
# OUTPUTS
summ = paddle.elementwise_add(x=data_o1, y=c1x1_c1)
dense = paddle.concat([data_o2, c1x1_c2], axis=1)
# tensor, channels
return [summ, dense]
class DPN(nn.Layer):
def __init__(self, layers=60, class_dim=1000):
super(DPN, self).__init__()
self._class_dim = class_dim
args = self.get_net_args(layers)
bws = args['bw']
inc_sec = args['inc_sec']
rs = args['r']
k_r = args['k_r']
k_sec = args['k_sec']
G = args['G']
init_num_filter = args['init_num_filter']
init_filter_size = args['init_filter_size']
init_padding = args['init_padding']
self.k_sec = k_sec
self.conv1_x_1_func = ConvBNLayer(
num_channels=3,
num_filters=init_num_filter,
filter_size=3,
stride=2,
pad=1,
act='relu',
name="conv1")
self.pool2d_max = Pool2D(
pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
num_channel_dpn = init_num_filter
self.dpn_func_list = []
#conv2 - conv5
match_list, num = [], 0
for gc in range(4):
bw = bws[gc]
inc = inc_sec[gc]
R = (k_r * bw) // rs[gc]
if gc == 0:
_type1 = 'proj'
_type2 = 'normal'
match = 1
else:
_type1 = 'down'
_type2 = 'normal'
match = match + k_sec[gc - 1]
match_list.append(match)
self.dpn_func_list.append(
self.add_sublayer(
"dpn{}".format(match),
DualPathFactory(
num_channels=num_channel_dpn,
num_1x1_a=R,
num_3x3_b=R,
num_1x1_c=bw,
inc=inc,
G=G,
_type=_type1,
name="dpn" + str(match))))
num_channel_dpn = [bw, 3 * inc]
for i_ly in range(2, k_sec[gc] + 1):
num += 1
if num in match_list:
num += 1
self.dpn_func_list.append(
self.add_sublayer(
"dpn{}".format(num),
DualPathFactory(
num_channels=num_channel_dpn,
num_1x1_a=R,
num_3x3_b=R,
num_1x1_c=bw,
inc=inc,
G=G,
_type=_type2,
name="dpn" + str(num))))
num_channel_dpn = [
num_channel_dpn[0], num_channel_dpn[1] + inc
]
out_channel = sum(num_channel_dpn)
self.conv5_x_x_bn = BatchNorm(
num_channels=sum(num_channel_dpn),
act="relu",
param_attr=ParamAttr(name='final_concat_bn_scale'),
bias_attr=ParamAttr('final_concat_bn_offset'),
moving_mean_name='final_concat_bn_mean',
moving_variance_name='final_concat_bn_variance')
self.pool2d_avg = Pool2D(pool_type='avg', global_pooling=True)
stdv = 0.01
self.out = Linear(
out_channel,
class_dim,
weight_attr=ParamAttr(
initializer=Uniform(-stdv, stdv), name="fc_weights"),
bias_attr=ParamAttr(name="fc_offset"))
def forward(self, input):
conv1_x_1 = self.conv1_x_1_func(input)
convX_x_x = self.pool2d_max(conv1_x_1)
dpn_idx = 0
for gc in range(4):
convX_x_x = self.dpn_func_list[dpn_idx](convX_x_x)
dpn_idx += 1
for i_ly in range(2, self.k_sec[gc] + 1):
convX_x_x = self.dpn_func_list[dpn_idx](convX_x_x)
dpn_idx += 1
conv5_x_x = paddle.concat(convX_x_x, axis=1)
conv5_x_x = self.conv5_x_x_bn(conv5_x_x)
y = self.pool2d_avg(conv5_x_x)
y = paddle.reshape(y, shape=[0, -1])
y = self.out(y)
return y
def get_net_args(self, layers):
if layers == 68:
k_r = 128
G = 32
k_sec = [3, 4, 12, 3]
inc_sec = [16, 32, 32, 64]
bw = [64, 128, 256, 512]
r = [64, 64, 64, 64]
init_num_filter = 10
init_filter_size = 3
init_padding = 1
elif layers == 92:
k_r = 96
G = 32
k_sec = [3, 4, 20, 3]
inc_sec = [16, 32, 24, 128]
bw = [256, 512, 1024, 2048]
r = [256, 256, 256, 256]
init_num_filter = 64
init_filter_size = 7
init_padding = 3
elif layers == 98:
k_r = 160
G = 40
k_sec = [3, 6, 20, 3]
inc_sec = [16, 32, 32, 128]
bw = [256, 512, 1024, 2048]
r = [256, 256, 256, 256]
init_num_filter = 96
init_filter_size = 7
init_padding = 3
elif layers == 107:
k_r = 200
G = 50
k_sec = [4, 8, 20, 3]
inc_sec = [20, 64, 64, 128]
bw = [256, 512, 1024, 2048]
r = [256, 256, 256, 256]
init_num_filter = 128
init_filter_size = 7
init_padding = 3
elif layers == 131:
k_r = 160
G = 40
k_sec = [4, 8, 28, 3]
inc_sec = [16, 32, 32, 128]
bw = [256, 512, 1024, 2048]
r = [256, 256, 256, 256]
init_num_filter = 128
init_filter_size = 7
init_padding = 3
else:
raise NotImplementedError
net_arg = {
'k_r': k_r,
'G': G,
'k_sec': k_sec,
'inc_sec': inc_sec,
'bw': bw,
'r': r
}
net_arg['init_num_filter'] = init_num_filter
net_arg['init_filter_size'] = init_filter_size
net_arg['init_padding'] = init_padding
return net_arg
def DPN68(**args):
model = DPN(layers=68, **args)
return model
def DPN92(**args):
model = DPN(layers=92, **args)
return model
def DPN98(**args):
model = DPN(layers=98, **args)
return model
def DPN107(**args):
model = DPN(layers=107, **args)
return model
def DPN131(**args):
model = DPN(layers=131, **args)
return model