105 lines
3.0 KiB
Python
105 lines
3.0 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import utils
|
|
import argparse
|
|
import numpy as np
|
|
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
|
|
|
|
def parse_args():
|
|
def str2bool(v):
|
|
return v.lower() in ("true", "t", "1")
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("-i", "--image_file", type=str)
|
|
parser.add_argument("-d", "--model_dir", type=str)
|
|
parser.add_argument("-m", "--model_file", type=str)
|
|
parser.add_argument("-p", "--params_file", type=str)
|
|
parser.add_argument("--use_gpu", type=str2bool, default=True)
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
def create_predictor(args):
|
|
if args.use_gpu:
|
|
place = fluid.CUDAPlace(0)
|
|
else:
|
|
place = fluid.CPUPlace()
|
|
|
|
exe = fluid.Executor(place)
|
|
[program, feed_names, fetch_lists] = fluid.io.load_inference_model(
|
|
args.model_dir,
|
|
exe,
|
|
model_filename=args.model_file,
|
|
params_filename=args.params_file)
|
|
compiled_program = fluid.compiler.CompiledProgram(program)
|
|
|
|
return exe, compiled_program, feed_names, fetch_lists
|
|
|
|
|
|
def create_operators():
|
|
size = 224
|
|
img_mean = [0.485, 0.456, 0.406]
|
|
img_std = [0.229, 0.224, 0.225]
|
|
img_scale = 1.0 / 255.0
|
|
|
|
decode_op = utils.DecodeImage()
|
|
resize_op = utils.ResizeImage(resize_short=256)
|
|
crop_op = utils.CropImage(size=(size, size))
|
|
normalize_op = utils.NormalizeImage(
|
|
scale=img_scale, mean=img_mean, std=img_std)
|
|
totensor_op = utils.ToTensor()
|
|
|
|
return [decode_op, resize_op, crop_op, normalize_op, totensor_op]
|
|
|
|
|
|
def preprocess(fname, ops):
|
|
data = open(fname, 'rb').read()
|
|
for op in ops:
|
|
data = op(data)
|
|
|
|
return data
|
|
|
|
|
|
def postprocess(outputs, topk=5):
|
|
output = outputs[0]
|
|
prob = np.array(output).flatten()
|
|
index = prob.argsort(axis=0)[-topk:][::-1].astype('int32')
|
|
return zip(index, prob[index])
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
operators = create_operators()
|
|
exe, program, feed_names, fetch_lists = create_predictor(args)
|
|
|
|
data = preprocess(args.image_file, operators)
|
|
data = np.expand_dims(data, axis=0)
|
|
outputs = exe.run(program,
|
|
feed={feed_names[0]: data},
|
|
fetch_list=fetch_lists,
|
|
return_numpy=False)
|
|
probs = postprocess(outputs)
|
|
|
|
for idx, prob in probs:
|
|
print("class id: {:d}, probability: {:.4f}".format(idx, prob))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
paddle.enable_static()
|
|
main()
|