PaddleClas/tools/infer/py_infer.py

105 lines
3.0 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import utils
import argparse
import numpy as np
import paddle
import paddle.fluid as fluid
def parse_args():
def str2bool(v):
return v.lower() in ("true", "t", "1")
parser = argparse.ArgumentParser()
parser.add_argument("-i", "--image_file", type=str)
parser.add_argument("-d", "--model_dir", type=str)
parser.add_argument("-m", "--model_file", type=str)
parser.add_argument("-p", "--params_file", type=str)
parser.add_argument("--use_gpu", type=str2bool, default=True)
return parser.parse_args()
def create_predictor(args):
if args.use_gpu:
place = fluid.CUDAPlace(0)
else:
place = fluid.CPUPlace()
exe = fluid.Executor(place)
[program, feed_names, fetch_lists] = fluid.io.load_inference_model(
args.model_dir,
exe,
model_filename=args.model_file,
params_filename=args.params_file)
compiled_program = fluid.compiler.CompiledProgram(program)
return exe, compiled_program, feed_names, fetch_lists
def create_operators():
size = 224
img_mean = [0.485, 0.456, 0.406]
img_std = [0.229, 0.224, 0.225]
img_scale = 1.0 / 255.0
decode_op = utils.DecodeImage()
resize_op = utils.ResizeImage(resize_short=256)
crop_op = utils.CropImage(size=(size, size))
normalize_op = utils.NormalizeImage(
scale=img_scale, mean=img_mean, std=img_std)
totensor_op = utils.ToTensor()
return [decode_op, resize_op, crop_op, normalize_op, totensor_op]
def preprocess(fname, ops):
data = open(fname, 'rb').read()
for op in ops:
data = op(data)
return data
def postprocess(outputs, topk=5):
output = outputs[0]
prob = np.array(output).flatten()
index = prob.argsort(axis=0)[-topk:][::-1].astype('int32')
return zip(index, prob[index])
def main():
args = parse_args()
operators = create_operators()
exe, program, feed_names, fetch_lists = create_predictor(args)
data = preprocess(args.image_file, operators)
data = np.expand_dims(data, axis=0)
outputs = exe.run(program,
feed={feed_names[0]: data},
fetch_list=fetch_lists,
return_numpy=False)
probs = postprocess(outputs)
for idx, prob in probs:
print("class id: {:d}, probability: {:.4f}".format(idx, prob))
if __name__ == "__main__":
paddle.enable_static()
main()