jm12138 8cd779be4d
Add RepVGG models (#592)
* Add RepVGG models

* Update model code

* Rename code

* format code

* add README of RepVGG
2021-02-01 18:07:25 +08:00

28 lines
1.4 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# RepVGG系列
## 概述
RepVGGMaking VGG-style ConvNets Great Again系列模型是由清华大学(丁贵广团队)、旷视科技(孙剑等人)、港科大和阿伯里斯特威斯大学在2021年提出的一个简单但强大的卷积神经网络架构该架构具有类似于VGG的推理时间主体该主体仅由3x3卷积和ReLU的堆栈组成而训练时间模型具有多分支拓扑。训练时间和推理时间架构的这种解耦是通过结构重新参数化(re-parameterization)技术实现的因此该模型称为RepVGG。[论文地址](https://arxiv.org/abs/2101.03697)。
## 精度、FLOPS和参数量
| Models | Top1 | Top5 | Reference<br>top1| FLOPS<br>(G) |
|:--:|:--:|:--:|:--:|:--:|
| RepVGG_A0 | 0.7131 | 0.9016 | 0.7241 | |
| RepVGG_A1 | 0.7380 | 0.9146 | 0.7446 | |
| RepVGG_A2 | 0.7571 | 0.9264 | 0.7648 | |
| RepVGG_B0 | 0.7450 | 0.9213 | 0.7514 | |
| RepVGG_B1 | 0.7773 | 0.9385 | 0.7837 | |
| RepVGG_B2 | 0.7813 | 0.9410 | 0.7878 | |
| RepVGG_B1g2 | 0.7732 | 0.9359 | 0.7778 | |
| RepVGG_B1g4 | 0.7675 | 0.9335 | 0.7758 | |
| RepVGG_B2g4 | 0.7782 | 0.9380 | 0.7850 | |
| Models | Top1 | Top5 | Reference<br>top1 | FLOPS<br>(G) |
|:--:|:--:|:--:|:--:|:--:|
| RepVGG_B3_200epochs | 0.7987 | 0.9502 | 0.8052 | |
| RepVGG_B2g4_200epochs | 0.7881 | 0.9448 | 0.7938 | |
| RepVGG_B3g4_200epochs | 0.7965 | 0.9485 | 0.8021 | |
关于Params、FLOPs、Inference speed等信息敬请期待。