PaddleClas/ppcls/modeling/architectures/mobilenet_v3.py

360 lines
11 KiB
Python

# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.functional.activation import hard_sigmoid, hard_swish
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.regularizer import L2Decay
import math
__all__ = [
"MobileNetV3_small_x0_35", "MobileNetV3_small_x0_5",
"MobileNetV3_small_x0_75", "MobileNetV3_small_x1_0",
"MobileNetV3_small_x1_25", "MobileNetV3_large_x0_35",
"MobileNetV3_large_x0_5", "MobileNetV3_large_x0_75",
"MobileNetV3_large_x1_0", "MobileNetV3_large_x1_25"
]
def make_divisible(v, divisor=8, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
if new_v < 0.9 * v:
new_v += divisor
return new_v
class MobileNetV3(nn.Layer):
def __init__(self,
scale=1.0,
model_name="small",
dropout_prob=0.2,
class_dim=1000):
super(MobileNetV3, self).__init__()
inplanes = 16
if model_name == "large":
self.cfg = [
# k, exp, c, se, nl, s,
[3, 16, 16, False, "relu", 1],
[3, 64, 24, False, "relu", 2],
[3, 72, 24, False, "relu", 1],
[5, 72, 40, True, "relu", 2],
[5, 120, 40, True, "relu", 1],
[5, 120, 40, True, "relu", 1],
[3, 240, 80, False, "hard_swish", 2],
[3, 200, 80, False, "hard_swish", 1],
[3, 184, 80, False, "hard_swish", 1],
[3, 184, 80, False, "hard_swish", 1],
[3, 480, 112, True, "hard_swish", 1],
[3, 672, 112, True, "hard_swish", 1],
[5, 672, 160, True, "hard_swish", 2],
[5, 960, 160, True, "hard_swish", 1],
[5, 960, 160, True, "hard_swish", 1],
]
self.cls_ch_squeeze = 960
self.cls_ch_expand = 1280
elif model_name == "small":
self.cfg = [
# k, exp, c, se, nl, s,
[3, 16, 16, True, "relu", 2],
[3, 72, 24, False, "relu", 2],
[3, 88, 24, False, "relu", 1],
[5, 96, 40, True, "hard_swish", 2],
[5, 240, 40, True, "hard_swish", 1],
[5, 240, 40, True, "hard_swish", 1],
[5, 120, 48, True, "hard_swish", 1],
[5, 144, 48, True, "hard_swish", 1],
[5, 288, 96, True, "hard_swish", 2],
[5, 576, 96, True, "hard_swish", 1],
[5, 576, 96, True, "hard_swish", 1],
]
self.cls_ch_squeeze = 576
self.cls_ch_expand = 1280
else:
raise NotImplementedError(
"mode[{}_model] is not implemented!".format(model_name))
self.conv1 = ConvBNLayer(
in_c=3,
out_c=make_divisible(inplanes * scale),
filter_size=3,
stride=2,
padding=1,
num_groups=1,
if_act=True,
act="hard_swish",
name="conv1")
self.block_list = []
i = 0
inplanes = make_divisible(inplanes * scale)
for (k, exp, c, se, nl, s) in self.cfg:
block = self.add_sublayer(
"conv" + str(i + 2),
ResidualUnit(
in_c=inplanes,
mid_c=make_divisible(scale * exp),
out_c=make_divisible(scale * c),
filter_size=k,
stride=s,
use_se=se,
act=nl,
name="conv" + str(i + 2)))
self.block_list.append(block)
inplanes = make_divisible(scale * c)
i += 1
self.last_second_conv = ConvBNLayer(
in_c=inplanes,
out_c=make_divisible(scale * self.cls_ch_squeeze),
filter_size=1,
stride=1,
padding=0,
num_groups=1,
if_act=True,
act="hard_swish",
name="conv_last")
self.pool = AdaptiveAvgPool2D(1)
self.last_conv = Conv2D(
in_channels=make_divisible(scale * self.cls_ch_squeeze),
out_channels=self.cls_ch_expand,
kernel_size=1,
stride=1,
padding=0,
weight_attr=ParamAttr(name="last_1x1_conv_weights"),
bias_attr=False)
self.dropout = Dropout(p=dropout_prob, mode="downscale_in_infer")
self.out = Linear(
self.cls_ch_expand,
class_dim,
weight_attr=ParamAttr("fc_weights"),
bias_attr=ParamAttr(name="fc_offset"))
def forward(self, inputs, label=None):
x = self.conv1(inputs)
for block in self.block_list:
x = block(x)
x = self.last_second_conv(x)
x = self.pool(x)
x = self.last_conv(x)
x = hard_swish(x)
x = self.dropout(x)
x = paddle.flatten(x, start_axis=1, stop_axis=-1)
x = self.out(x)
return x
class ConvBNLayer(nn.Layer):
def __init__(self,
in_c,
out_c,
filter_size,
stride,
padding,
num_groups=1,
if_act=True,
act=None,
use_cudnn=True,
name=""):
super(ConvBNLayer, self).__init__()
self.if_act = if_act
self.act = act
self.conv = Conv2D(
in_channels=in_c,
out_channels=out_c,
kernel_size=filter_size,
stride=stride,
padding=padding,
groups=num_groups,
weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
self.bn = BatchNorm(
num_channels=out_c,
act=None,
param_attr=ParamAttr(
name=name + "_bn_scale", regularizer=L2Decay(0.0)),
bias_attr=ParamAttr(
name=name + "_bn_offset", regularizer=L2Decay(0.0)),
moving_mean_name=name + "_bn_mean",
moving_variance_name=name + "_bn_variance")
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
if self.if_act:
if self.act == "relu":
x = F.relu(x)
elif self.act == "hard_swish":
x = hard_swish(x)
else:
print("The activation function is selected incorrectly.")
exit()
return x
class ResidualUnit(nn.Layer):
def __init__(self,
in_c,
mid_c,
out_c,
filter_size,
stride,
use_se,
act=None,
name=''):
super(ResidualUnit, self).__init__()
self.if_shortcut = stride == 1 and in_c == out_c
self.if_se = use_se
self.expand_conv = ConvBNLayer(
in_c=in_c,
out_c=mid_c,
filter_size=1,
stride=1,
padding=0,
if_act=True,
act=act,
name=name + "_expand")
self.bottleneck_conv = ConvBNLayer(
in_c=mid_c,
out_c=mid_c,
filter_size=filter_size,
stride=stride,
padding=int((filter_size - 1) // 2),
num_groups=mid_c,
if_act=True,
act=act,
name=name + "_depthwise")
if self.if_se:
self.mid_se = SEModule(mid_c, name=name + "_se")
self.linear_conv = ConvBNLayer(
in_c=mid_c,
out_c=out_c,
filter_size=1,
stride=1,
padding=0,
if_act=False,
act=None,
name=name + "_linear")
def forward(self, inputs):
x = self.expand_conv(inputs)
x = self.bottleneck_conv(x)
if self.if_se:
x = self.mid_se(x)
x = self.linear_conv(x)
if self.if_shortcut:
x = paddle.add(inputs, x)
return x
class SEModule(nn.Layer):
def __init__(self, channel, reduction=4, name=""):
super(SEModule, self).__init__()
self.avg_pool = AdaptiveAvgPool2D(1)
self.conv1 = Conv2D(
in_channels=channel,
out_channels=channel // reduction,
kernel_size=1,
stride=1,
padding=0,
weight_attr=ParamAttr(name=name + "_1_weights"),
bias_attr=ParamAttr(name=name + "_1_offset"))
self.conv2 = Conv2D(
in_channels=channel // reduction,
out_channels=channel,
kernel_size=1,
stride=1,
padding=0,
weight_attr=ParamAttr(name + "_2_weights"),
bias_attr=ParamAttr(name=name + "_2_offset"))
def forward(self, inputs):
outputs = self.avg_pool(inputs)
outputs = self.conv1(outputs)
outputs = F.relu(outputs)
outputs = self.conv2(outputs)
outputs = hard_sigmoid(outputs)
return paddle.multiply(x=inputs, y=outputs)
def MobileNetV3_small_x0_35(**args):
model = MobileNetV3(model_name="small", scale=0.35, **args)
return model
def MobileNetV3_small_x0_5(**args):
model = MobileNetV3(model_name="small", scale=0.5, **args)
return model
def MobileNetV3_small_x0_75(**args):
model = MobileNetV3(model_name="small", scale=0.75, **args)
return model
def MobileNetV3_small_x1_0(**args):
model = MobileNetV3(model_name="small", scale=1.0, **args)
return model
def MobileNetV3_small_x1_25(**args):
model = MobileNetV3(model_name="small", scale=1.25, **args)
return model
def MobileNetV3_large_x0_35(**args):
model = MobileNetV3(model_name="large", scale=0.35, **args)
return model
def MobileNetV3_large_x0_5(**args):
model = MobileNetV3(model_name="large", scale=0.5, **args)
return model
def MobileNetV3_large_x0_75(**args):
model = MobileNetV3(model_name="large", scale=0.75, **args)
return model
def MobileNetV3_large_x1_0(**args):
model = MobileNetV3(model_name="large", scale=1.0, **args)
return model
def MobileNetV3_large_x1_25(**args):
model = MobileNetV3(model_name="large", scale=1.25, **args)
return model