85 lines
2.9 KiB
Python
85 lines
2.9 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
import sys
|
|
|
|
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
|
sys.path.append(os.path.abspath(os.path.join(__dir__, '../')))
|
|
|
|
import cv2
|
|
import numpy as np
|
|
|
|
from utils import logger
|
|
from utils import config
|
|
from utils.predictor import Predictor
|
|
from utils.get_image_list import get_image_list
|
|
from preprocess import create_operators
|
|
from postprocess import build_postprocess
|
|
|
|
|
|
class RecPredictor(Predictor):
|
|
def __init__(self, config):
|
|
super().__init__(config["Global"],
|
|
config["Global"]["rec_inference_model_dir"])
|
|
self.preprocess_ops = create_operators(config["RecPreProcess"][
|
|
"transform_ops"])
|
|
self.postprocess = build_postprocess(config["RecPostProcess"])
|
|
|
|
def predict(self, images, feature_normalize=True):
|
|
input_names = self.paddle_predictor.get_input_names()
|
|
input_tensor = self.paddle_predictor.get_input_handle(input_names[0])
|
|
|
|
output_names = self.paddle_predictor.get_output_names()
|
|
output_tensor = self.paddle_predictor.get_output_handle(output_names[
|
|
0])
|
|
|
|
if not isinstance(images, (list, )):
|
|
images = [images]
|
|
for idx in range(len(images)):
|
|
for ops in self.preprocess_ops:
|
|
images[idx] = ops(images[idx])
|
|
image = np.array(images)
|
|
|
|
input_tensor.copy_from_cpu(image)
|
|
self.paddle_predictor.run()
|
|
batch_output = output_tensor.copy_to_cpu()
|
|
|
|
if feature_normalize:
|
|
feas_norm = np.sqrt(
|
|
np.sum(np.square(batch_output), axis=1, keepdims=True))
|
|
batch_output = np.divide(batch_output, feas_norm)
|
|
|
|
return batch_output
|
|
|
|
|
|
def main(config):
|
|
rec_predictor = RecPredictor(config)
|
|
image_list = get_image_list(config["Global"]["infer_imgs"])
|
|
|
|
assert config["Global"]["batch_size"] == 1
|
|
for idx, image_file in enumerate(image_list):
|
|
batch_input = []
|
|
img = cv2.imread(image_file)[:, :, ::-1]
|
|
output = rec_predictor.predict(img)
|
|
if rec_predictor.postprocess is not None:
|
|
output = rec_predictor.postprocess(output)
|
|
print(output.shape)
|
|
return
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = config.parse_args()
|
|
config = config.get_config(args.config, overrides=args.override, show=True)
|
|
main(config)
|