195 lines
5.5 KiB
Python
195 lines
5.5 KiB
Python
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import paddle.fluid as fluid
|
|
from paddle.fluid.layer_helper import LayerHelper
|
|
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
|
|
|
|
import math
|
|
|
|
__all__ = [
|
|
"ResNet18",
|
|
"ResNet34",
|
|
"ResNet50",
|
|
"ResNet101",
|
|
"ResNet152",
|
|
]
|
|
|
|
|
|
class ConvBNLayer(fluid.dygraph.Layer):
|
|
def __init__(self,
|
|
num_channels,
|
|
num_filters,
|
|
filter_size,
|
|
stride=1,
|
|
groups=1,
|
|
act=None):
|
|
super(ConvBNLayer, self).__init__()
|
|
|
|
self._conv = Conv2D(
|
|
num_channels=num_channels,
|
|
num_filters=num_filters,
|
|
filter_size=filter_size,
|
|
stride=stride,
|
|
padding=(filter_size - 1) // 2,
|
|
groups=groups,
|
|
act=None,
|
|
bias_attr=False)
|
|
|
|
self._batch_norm = BatchNorm(num_filters, act=act)
|
|
|
|
def forward(self, inputs):
|
|
y = self._conv(inputs)
|
|
y = self._batch_norm(y)
|
|
|
|
return y
|
|
|
|
|
|
class BottleneckBlock(fluid.dygraph.Layer):
|
|
def __init__(self, num_channels, num_filters, stride, shortcut=True):
|
|
super(BottleneckBlock, self).__init__()
|
|
|
|
self.conv0 = ConvBNLayer(
|
|
num_channels=num_channels,
|
|
num_filters=num_filters,
|
|
filter_size=1,
|
|
act='relu')
|
|
self.conv1 = ConvBNLayer(
|
|
num_channels=num_filters,
|
|
num_filters=num_filters,
|
|
filter_size=3,
|
|
stride=stride,
|
|
act='relu')
|
|
self.conv2 = ConvBNLayer(
|
|
num_channels=num_filters,
|
|
num_filters=num_filters * 4,
|
|
filter_size=1,
|
|
act=None)
|
|
|
|
self.shortcut = shortcut
|
|
|
|
if not self.shortcut:
|
|
self.short = ConvBNLayer(
|
|
num_channels=num_channels,
|
|
num_filters=num_filters * 4,
|
|
filter_size=1,
|
|
stride=stride)
|
|
|
|
self._num_channels_out = num_filters * 4
|
|
|
|
def forward(self, inputs):
|
|
y = self.conv0(inputs)
|
|
conv1 = self.conv1(y)
|
|
conv2 = self.conv2(conv1)
|
|
|
|
if self.shortcut:
|
|
short = inputs
|
|
else:
|
|
short = self.short(inputs)
|
|
|
|
y = fluid.layers.elementwise_add(x=short, y=conv2)
|
|
|
|
layer_helper = LayerHelper(self.full_name(), act='relu')
|
|
return layer_helper.append_activation(y)
|
|
|
|
|
|
class ResNet(fluid.dygraph.Layer):
|
|
def __init__(self, layers=50, class_dim=1000):
|
|
super(ResNet, self).__init__()
|
|
|
|
if layers == 18:
|
|
depth = [2, 2, 2, 2]
|
|
elif layers == 18 or layers == 50:
|
|
depth = [3, 4, 6, 3]
|
|
elif layers == 101:
|
|
depth = [3, 4, 23, 3]
|
|
elif layers == 152:
|
|
depth = [3, 8, 36, 3]
|
|
else:
|
|
raise ValueError('Input layer is not supported')
|
|
num_channels = [64, 256, 512, 1024]
|
|
num_filters = [64, 128, 256, 512]
|
|
|
|
self.conv = ConvBNLayer(
|
|
num_channels=3,
|
|
num_filters=64,
|
|
filter_size=7,
|
|
stride=2,
|
|
act='relu')
|
|
self.pool2d_max = Pool2D(
|
|
pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
|
|
|
|
self.bottleneck_block_list = []
|
|
for block in range(len(depth)):
|
|
shortcut = False
|
|
for i in range(depth[block]):
|
|
bottleneck_block = self.add_sublayer(
|
|
'bb_%d_%d' % (block, i),
|
|
BottleneckBlock(
|
|
num_channels=num_channels[block]
|
|
if i == 0 else num_filters[block] * 4,
|
|
num_filters=num_filters[block],
|
|
stride=2 if i == 0 and block != 0 else 1,
|
|
shortcut=shortcut))
|
|
self.bottleneck_block_list.append(bottleneck_block)
|
|
shortcut = True
|
|
|
|
self.pool2d_avg = Pool2D(
|
|
pool_size=7, pool_type='avg', global_pooling=True)
|
|
|
|
self.pool2d_avg_output = num_filters[len(num_filters) - 1] * 4 * 1 * 1
|
|
|
|
stdv = 1.0 / math.sqrt(2048 * 1.0)
|
|
|
|
self.out = Linear(
|
|
self.pool2d_avg_output,
|
|
class_dim,
|
|
param_attr=fluid.param_attr.ParamAttr(
|
|
initializer=fluid.initializer.Uniform(-stdv, stdv)))
|
|
|
|
def forward(self, inputs):
|
|
y = self.conv(inputs)
|
|
y = self.pool2d_max(y)
|
|
for bottleneck_block in self.bottleneck_block_list:
|
|
y = bottleneck_block(y)
|
|
y = self.pool2d_avg(y)
|
|
y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_output])
|
|
y = self.out(y)
|
|
return y
|
|
|
|
|
|
def ResNet18(**kwargs):
|
|
model = ResNet(layers=18, **kwargs)
|
|
return model
|
|
|
|
|
|
def ResNet34(**kwargs):
|
|
model = ResNet(layers=34, **kwargs)
|
|
return model
|
|
|
|
|
|
def ResNet50(**kwargs):
|
|
model = ResNet(layers=50, **kwargs)
|
|
return model
|
|
|
|
|
|
def ResNet101(**kwargs):
|
|
model = ResNet(layers=101, **kwargs)
|
|
return model
|
|
|
|
|
|
def ResNet152(**kwargs):
|
|
model = ResNet(layers=152, **kwargs)
|
|
return model
|