PaddleClas/ppcls/metric/metrics.py

468 lines
17 KiB
Python

# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from cmath import nan
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from sklearn.metrics import hamming_loss
from sklearn.metrics import accuracy_score as accuracy_metric
from sklearn.metrics import multilabel_confusion_matrix
from sklearn.preprocessing import binarize
from easydict import EasyDict
from ppcls.metric.avg_metrics import AvgMetrics
from ppcls.utils.misc import AverageMeter, AttrMeter
from ppcls.utils import logger
class TopkAcc(AvgMetrics):
def __init__(self, topk=(1, 5)):
super().__init__()
assert isinstance(topk, (int, list, tuple))
if isinstance(topk, int):
topk = [topk]
self.topk = topk
self.reset()
def reset(self):
self.avg_meters = {
f"top{k}": AverageMeter(f"top{k}")
for k in self.topk
}
def forward(self, x, label):
if isinstance(x, dict):
x = x["logits"]
output_dims = x.shape[-1]
metric_dict = dict()
for idx, k in enumerate(self.topk):
if output_dims < k:
msg = f"The output dims({output_dims}) is less than k({k}), and the argument {k} of Topk has been removed."
logger.warning(msg)
self.avg_meters.pop(f"top{k}")
continue
metric_dict[f"top{k}"] = paddle.metric.accuracy(x, label, k=k)
self.avg_meters[f"top{k}"].update(metric_dict[f"top{k}"],
x.shape[0])
self.topk = list(filter(lambda k: k <= output_dims, self.topk))
return metric_dict
class mAP(nn.Layer):
def __init__(self, descending=True):
super().__init__()
self.descending = descending
def forward(self, similarities_matrix, query_img_id, gallery_img_id,
keep_mask):
metric_dict = dict()
choosen_indices = paddle.argsort(
similarities_matrix, axis=1, descending=self.descending)
gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
gallery_labels_transpose = paddle.broadcast_to(
gallery_labels_transpose,
shape=[
choosen_indices.shape[0], gallery_labels_transpose.shape[1]
])
choosen_label = paddle.index_sample(gallery_labels_transpose,
choosen_indices)
equal_flag = paddle.equal(choosen_label, query_img_id)
if keep_mask is not None:
keep_mask = paddle.index_sample(
keep_mask.astype('float32'), choosen_indices)
equal_flag = paddle.logical_and(equal_flag,
keep_mask.astype('bool'))
equal_flag = paddle.cast(equal_flag, 'float32')
num_rel = paddle.sum(equal_flag, axis=1)
num_rel = paddle.greater_than(num_rel, paddle.to_tensor(0.))
num_rel_index = paddle.nonzero(num_rel.astype("int"))
num_rel_index = paddle.reshape(num_rel_index, [num_rel_index.shape[0]])
if paddle.numel(num_rel_index).item() == 0:
metric_dict["mAP"] = np.nan
return metric_dict
equal_flag = paddle.index_select(equal_flag, num_rel_index, axis=0)
acc_sum = paddle.cumsum(equal_flag, axis=1)
div = paddle.arange(acc_sum.shape[1]).astype("float32") + 1
precision = paddle.divide(acc_sum, div)
#calc map
precision_mask = paddle.multiply(equal_flag, precision)
ap = paddle.sum(precision_mask, axis=1) / paddle.sum(equal_flag,
axis=1)
metric_dict["mAP"] = float(paddle.mean(ap))
return metric_dict
class mINP(nn.Layer):
def __init__(self, descending=True):
super().__init__()
self.descending = descending
def forward(self, similarities_matrix, query_img_id, gallery_img_id,
keep_mask):
metric_dict = dict()
choosen_indices = paddle.argsort(
similarities_matrix, axis=1, descending=self.descending)
gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
gallery_labels_transpose = paddle.broadcast_to(
gallery_labels_transpose,
shape=[
choosen_indices.shape[0], gallery_labels_transpose.shape[1]
])
choosen_label = paddle.index_sample(gallery_labels_transpose,
choosen_indices)
equal_flag = paddle.equal(choosen_label, query_img_id)
if keep_mask is not None:
keep_mask = paddle.indechmx_sample(
keep_mask.astype('float32'), choosen_indices)
equal_flag = paddle.logical_and(equal_flag,
keep_mask.astype('bool'))
equal_flag = paddle.cast(equal_flag, 'float32')
num_rel = paddle.sum(equal_flag, axis=1)
num_rel = paddle.greater_than(num_rel, paddle.to_tensor(0.))
num_rel_index = paddle.nonzero(num_rel.astype("int"))
num_rel_index = paddle.reshape(num_rel_index, [num_rel_index.shape[0]])
equal_flag = paddle.index_select(equal_flag, num_rel_index, axis=0)
#do accumulative sum
div = paddle.arange(equal_flag.shape[1]).astype("float32") + 2
minus = paddle.divide(equal_flag, div)
auxilary = paddle.subtract(equal_flag, minus)
hard_index = paddle.argmax(auxilary, axis=1).astype("float32")
all_INP = paddle.divide(paddle.sum(equal_flag, axis=1), hard_index)
mINP = paddle.mean(all_INP)
metric_dict["mINP"] = float(mINP)
return metric_dict
class TprAtFpr(nn.Layer):
def __init__(self, max_fpr=1 / 1000.):
super().__init__()
self.gt_pos_score_list = []
self.gt_neg_score_list = []
self.softmax = nn.Softmax(axis=-1)
self.max_fpr = max_fpr
self.max_tpr = 0.
def forward(self, x, label):
if isinstance(x, dict):
x = x["logits"]
x = self.softmax(x)
for i, label_i in enumerate(label):
if label_i[0] == 0:
self.gt_neg_score_list.append(x[i][1].numpy())
else:
self.gt_pos_score_list.append(x[i][1].numpy())
return {}
def reset(self):
self.gt_pos_score_list = []
self.gt_neg_score_list = []
self.max_tpr = 0.
@property
def avg(self):
return self.max_tpr
@property
def avg_info(self):
max_tpr = 0.
result = ""
gt_pos_score_list = np.array(self.gt_pos_score_list)
gt_neg_score_list = np.array(self.gt_neg_score_list)
for i in range(0, 10000):
threshold = i / 10000.
if len(gt_pos_score_list) == 0:
continue
tpr = np.sum(
gt_pos_score_list > threshold) / len(gt_pos_score_list)
if len(gt_neg_score_list) == 0 and tpr > max_tpr:
max_tpr = tpr
result = "threshold: {}, fpr: 0.0, tpr: {:.5f}".format(
threshold, tpr)
msg = f"The number of negative samples is 0, please add negative samples."
logger.warning(msg)
fpr = np.sum(
gt_neg_score_list > threshold) / len(gt_neg_score_list)
if fpr <= self.max_fpr and tpr > max_tpr:
max_tpr = tpr
result = "threshold: {}, fpr: {}, tpr: {:.5f}".format(
threshold, fpr, tpr)
self.max_tpr = max_tpr
return result
class Recallk(nn.Layer):
def __init__(self, topk=(1, 5), descending=True):
super().__init__()
assert isinstance(topk, (int, list, tuple))
if isinstance(topk, int):
topk = [topk]
self.topk = topk
self.descending = descending
def forward(self, similarities_matrix, query_img_id, gallery_img_id,
keep_mask):
metric_dict = dict()
#get cmc
choosen_indices = paddle.argsort(
similarities_matrix, axis=1, descending=self.descending)
gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
gallery_labels_transpose = paddle.broadcast_to(
gallery_labels_transpose,
shape=[
choosen_indices.shape[0], gallery_labels_transpose.shape[1]
])
choosen_label = paddle.index_sample(gallery_labels_transpose,
choosen_indices)
equal_flag = paddle.equal(choosen_label, query_img_id)
if keep_mask is not None:
keep_mask = paddle.index_sample(
keep_mask.astype('float32'), choosen_indices)
equal_flag = paddle.logical_and(equal_flag,
keep_mask.astype('bool'))
equal_flag = paddle.cast(equal_flag, 'float32')
real_query_num = paddle.sum(equal_flag, axis=1)
real_query_num = paddle.sum(
paddle.greater_than(real_query_num, paddle.to_tensor(0.)).astype(
"float32"))
acc_sum = paddle.cumsum(equal_flag, axis=1)
mask = paddle.greater_than(acc_sum,
paddle.to_tensor(0.)).astype("float32")
all_cmc = (paddle.sum(mask, axis=0) / real_query_num).numpy()
for k in self.topk:
metric_dict["recall{}".format(k)] = all_cmc[k - 1]
return metric_dict
class Precisionk(nn.Layer):
def __init__(self, topk=(1, 5), descending=True):
super().__init__()
assert isinstance(topk, (int, list, tuple))
if isinstance(topk, int):
topk = [topk]
self.topk = topk
self.descending = descending
def forward(self, similarities_matrix, query_img_id, gallery_img_id,
keep_mask):
metric_dict = dict()
#get cmc
choosen_indices = paddle.argsort(
similarities_matrix, axis=1, descending=self.descending)
gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
gallery_labels_transpose = paddle.broadcast_to(
gallery_labels_transpose,
shape=[
choosen_indices.shape[0], gallery_labels_transpose.shape[1]
])
choosen_label = paddle.index_sample(gallery_labels_transpose,
choosen_indices)
equal_flag = paddle.equal(choosen_label, query_img_id)
if keep_mask is not None:
keep_mask = paddle.index_sample(
keep_mask.astype('float32'), choosen_indices)
equal_flag = paddle.logical_and(equal_flag,
keep_mask.astype('bool'))
equal_flag = paddle.cast(equal_flag, 'float32')
Ns = paddle.arange(gallery_img_id.shape[0]) + 1
equal_flag_cumsum = paddle.cumsum(equal_flag, axis=1)
Precision_at_k = (paddle.mean(equal_flag_cumsum, axis=0) / Ns).numpy()
for k in self.topk:
metric_dict["precision@{}".format(k)] = Precision_at_k[k - 1]
return metric_dict
class DistillationTopkAcc(TopkAcc):
def __init__(self, model_key, feature_key=None, topk=(1, 5)):
super().__init__(topk=topk)
self.model_key = model_key
self.feature_key = feature_key
def forward(self, x, label):
if isinstance(x, dict):
x = x[self.model_key]
if self.feature_key is not None:
x = x[self.feature_key]
return super().forward(x, label)
class GoogLeNetTopkAcc(TopkAcc):
def __init__(self, topk=(1, 5)):
super().__init__()
assert isinstance(topk, (int, list, tuple))
if isinstance(topk, int):
topk = [topk]
self.topk = topk
def forward(self, x, label):
return super().forward(x[0], label)
class MultiLabelMetric(AvgMetrics):
def __init__(self, bi_threshold=0.5):
super().__init__()
self.bi_threshold = bi_threshold
def _multi_hot_encode(self, output):
logits = F.sigmoid(output).numpy()
return binarize(logits, threshold=self.bi_threshold)
class HammingDistance(MultiLabelMetric):
"""
Soft metric based label for multilabel classification
Returns:
The smaller the return value is, the better model is.
"""
def __init__(self):
super().__init__()
self.reset()
def reset(self):
self.avg_meters = {"HammingDistance": AverageMeter("HammingDistance")}
def forward(self, output, target):
preds = super()._multi_hot_encode(output)
metric_dict = dict()
metric_dict["HammingDistance"] = paddle.to_tensor(
hamming_loss(target, preds))
self.avg_meters["HammingDistance"].update(
float(metric_dict["HammingDistance"]), output.shape[0])
return metric_dict
class AccuracyScore(MultiLabelMetric):
"""
Hard metric for multilabel classification
Args:
base: ["sample", "label"], default="sample"
if "sample", return metric score based sample,
if "label", return metric score based label.
Returns:
accuracy:
"""
def __init__(self, base="label"):
super().__init__()
assert base in ["sample", "label"
], 'must be one of ["sample", "label"]'
self.base = base
self.reset()
def reset(self):
self.avg_meters = {"AccuracyScore": AverageMeter("AccuracyScore")}
def forward(self, output, target):
preds = super()._multi_hot_encode(output)
metric_dict = dict()
if self.base == "sample":
accuracy = accuracy_metric(target, preds)
elif self.base == "label":
mcm = multilabel_confusion_matrix(target, preds)
tns = mcm[:, 0, 0]
fns = mcm[:, 1, 0]
tps = mcm[:, 1, 1]
fps = mcm[:, 0, 1]
accuracy = (sum(tps) + sum(tns)) / (
sum(tps) + sum(tns) + sum(fns) + sum(fps))
metric_dict["AccuracyScore"] = paddle.to_tensor(accuracy)
self.avg_meters["AccuracyScore"].update(
float(metric_dict["AccuracyScore"]), output.shape[0])
return metric_dict
def get_attr_metrics(gt_label, preds_probs, threshold):
"""
index: evaluated label index
adapted from "https://github.com/valencebond/Rethinking_of_PAR/blob/master/metrics/pedestrian_metrics.py"
"""
pred_label = (preds_probs > threshold).astype(int)
eps = 1e-20
result = EasyDict()
has_fuyi = gt_label == -1
pred_label[has_fuyi] = -1
###############################
# label metrics
# TP + FN
result.gt_pos = np.sum((gt_label == 1), axis=0).astype(float)
# TN + FP
result.gt_neg = np.sum((gt_label == 0), axis=0).astype(float)
# TP
result.true_pos = np.sum((gt_label == 1) * (pred_label == 1),
axis=0).astype(float)
# TN
result.true_neg = np.sum((gt_label == 0) * (pred_label == 0),
axis=0).astype(float)
# FP
result.false_pos = np.sum(((gt_label == 0) * (pred_label == 1)),
axis=0).astype(float)
# FN
result.false_neg = np.sum(((gt_label == 1) * (pred_label == 0)),
axis=0).astype(float)
################
# instance metrics
result.gt_pos_ins = np.sum((gt_label == 1), axis=1).astype(float)
result.true_pos_ins = np.sum((pred_label == 1), axis=1).astype(float)
# true positive
result.intersect_pos = np.sum((gt_label == 1) * (pred_label == 1),
axis=1).astype(float)
# IOU
result.union_pos = np.sum(((gt_label == 1) + (pred_label == 1)),
axis=1).astype(float)
return result
class ATTRMetric(nn.Layer):
def __init__(self, threshold=0.5):
super().__init__()
self.threshold = threshold
def reset(self):
self.attrmeter = AttrMeter(threshold=0.5)
def forward(self, output, target):
metric_dict = get_attr_metrics(target[:, 0, :].numpy(),
output.numpy(), self.threshold)
self.attrmeter.update(metric_dict)
return metric_dict