PaddleClas/docs/zh_CN/models/EfficientNet_and_ResNeXt101_wsl.md
littletomatodonkey c6fc0c3a49 rename fp32->FP32
2020-04-13 16:28:15 +00:00

3.7 KiB

EfficientNet与ResNeXt101_wsl系列

概述

正在持续更新中......

该系列模型的FLOPS、参数量以及FP32预测耗时如下图所示。

精度、FLOPS和参数量

Models Top1 Top5 Reference
top1
Reference
top5
FLOPS
(G)
Parameters
(M)
ResNeXt101_
32x8d_wsl
0.826 0.967 0.822 0.964 29.140 78.440
ResNeXt101_
32x16d_wsl
0.842 0.973 0.842 0.972 57.550 152.660
ResNeXt101_
32x32d_wsl
0.850 0.976 0.851 0.975 115.170 303.110
ResNeXt101_
32x48d_wsl
0.854 0.977 0.854 0.976 173.580 456.200
Fix_ResNeXt101_
32x48d_wsl
0.863 0.980 0.864 0.980 354.230 456.200
EfficientNetB0 0.774 0.933 0.773 0.935 0.720 5.100
EfficientNetB1 0.792 0.944 0.792 0.945 1.270 7.520
EfficientNetB2 0.799 0.947 0.803 0.950 1.850 8.810
EfficientNetB3 0.812 0.954 0.817 0.956 3.430 11.840
EfficientNetB4 0.829 0.962 0.830 0.963 8.290 18.760
EfficientNetB5 0.836 0.967 0.837 0.967 19.510 29.610
EfficientNetB6 0.840 0.969 0.842 0.968 36.270 42.000
EfficientNetB7 0.843 0.969 0.844 0.971 72.350 64.920
EfficientNetB0_
small
0.758 0.926 0.720 4.650

FP32预测速度

Models Crop Size Resize Short Size Batch Size=1
(ms)
ResNeXt101_
32x8d_wsl
224 256 19.127
ResNeXt101_
32x16d_wsl
224 256 23.629
ResNeXt101_
32x32d_wsl
224 256 40.214
ResNeXt101_
32x48d_wsl
224 256 59.714
Fix_ResNeXt101_
32x48d_wsl
320 320 82.431
EfficientNetB0 224 256 2.449
EfficientNetB1 240 272 3.547
EfficientNetB2 260 292 3.908
EfficientNetB3 300 332 5.145
EfficientNetB4 380 412 7.609
EfficientNetB5 456 488 12.078
EfficientNetB6 528 560 18.381
EfficientNetB7 600 632 27.817
EfficientNetB0_
small
224 256 1.692