PaddleClas/ppcls/configs/PULC/person_attribute/SwinTransformer_tiny.yaml

136 lines
3.0 KiB
YAML

# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: "./output/"
device: "gpu"
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 20
print_batch_step: 10
use_visualdl: False
# used for static mode and model export
image_shape: [3, 224, 224]
save_inference_dir: "./inference"
use_multilabel: True
# model architecture
Arch:
name: "SwinTransformer_tiny_patch4_window7_224"
pretrained: True
class_num: 26
# loss function config for traing/eval process
Loss:
Train:
- MultiLabelLoss:
weight: 1.0
weight_ratio: True
size_sum: True
Eval:
- MultiLabelLoss:
weight: 1.0
weight_ratio: True
size_sum: True
Optimizer:
name: Momentum
momentum: 0.9
lr:
name: Cosine
learning_rate: 0.01
warmup_epoch: 5
regularizer:
name: 'L2'
coeff: 0.0005
#clip_norm: 10
# data loader for train and eval
DataLoader:
Train:
dataset:
name: MultiLabelDataset
image_root: "dataset/pa100k/"
cls_label_path: "dataset/pa100k/train_list.txt"
label_ratio: True
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
size: [224, 224]
- Padv2:
size: [244, 244]
pad_mode: 1
fill_value: 0
- RandomCropImage:
size: [224, 224]
- RandFlipImage:
flip_code: 1
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 64
drop_last: True
shuffle: True
loader:
num_workers: 4
use_shared_memory: True
Eval:
dataset:
name: MultiLabelDataset
image_root: "dataset/pa100k/"
cls_label_path: "dataset/pa100k/val_list.txt"
label_ratio: True
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
size: [224, 224]
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 64
drop_last: False
shuffle: False
loader:
num_workers: 4
use_shared_memory: True
Infer:
infer_imgs: deploy/images/PULC/person_attribute/090004.jpg
batch_size: 10
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
size: [224, 224]
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
PostProcess:
name: PersonAttribute
threshold: 0.5 #default threshold
glasses_threshold: 0.3 #threshold only for glasses
hold_threshold: 0.6 #threshold only for hold
Metric:
Eval:
- ATTRMetric: