PaddleClas/ppcls/loss/dmlloss.py

63 lines
2.1 KiB
Python

# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppcls.loss.multilabelloss import ratio2weight
class DMLLoss(nn.Layer):
"""
DMLLoss
"""
def __init__(self, act="softmax", sum_across_class_dim=False, eps=1e-12):
super().__init__()
if act is not None:
assert act in ["softmax", "sigmoid"]
if act == "softmax":
self.act = nn.Softmax(axis=-1)
elif act == "sigmoid":
self.act = nn.Sigmoid()
else:
self.act = None
self.eps = eps
self.sum_across_class_dim = sum_across_class_dim
def _kldiv(self, x, target):
class_num = x.shape[-1]
cost = target * paddle.log(
(target + self.eps) / (x + self.eps)) * class_num
return cost
def forward(self, x, target, gt_label=None):
if self.act is not None:
x = self.act(x)
target = self.act(target)
loss = self._kldiv(x, target) + self._kldiv(target, x)
loss = loss / 2
# for multi-label dml loss
if gt_label is not None:
gt_label, label_ratio = gt_label[:, 0, :], gt_label[:, 1, :]
targets_mask = paddle.cast(gt_label > 0.5, 'float32')
weight = ratio2weight(targets_mask, paddle.to_tensor(label_ratio))
weight = weight * (gt_label > -1)
loss = loss * weight
loss = loss.sum(1).mean() if self.sum_across_class_dim else loss.mean()
return {"DMLLoss": loss}