PaddleClas/ppcls/loss/mgd_loss.py

85 lines
2.7 KiB
Python

# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppcls.utils.initializer import kaiming_normal_
class MGDLoss(nn.Layer):
"""Paddle version of `Masked Generative Distillation`
MGDLoss
Reference: https://arxiv.org/abs/2205.01529
Code was heavily based on https://github.com/yzd-v/MGD
"""
def __init__(
self,
student_channels,
teacher_channels,
alpha_mgd=1.756,
lambda_mgd=0.15, ):
super().__init__()
self.alpha_mgd = alpha_mgd
self.lambda_mgd = lambda_mgd
if student_channels != teacher_channels:
self.align = nn.Conv2D(
student_channels,
teacher_channels,
kernel_size=1,
stride=1,
padding=0)
else:
self.align = None
self.generation = nn.Sequential(
nn.Conv2D(
teacher_channels, teacher_channels, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2D(
teacher_channels, teacher_channels, kernel_size=3, padding=1))
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Conv2D):
kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
def forward(self, pred_s, pred_t):
"""Forward function.
Args:
pred_s(Tensor): Bs*C*H*W, student's feature map
pred_t(Tensor): Bs*C*H*W, teacher's feature map
"""
assert pred_s.shape[-2:] == pred_t.shape[-2:]
if self.align is not None:
pred_s = self.align(pred_s)
loss = self.get_dis_loss(pred_s, pred_t) * self.alpha_mgd
return loss
def get_dis_loss(self, pred_s, pred_t):
loss_mse = nn.MSELoss(reduction='mean')
N, C, _, _ = pred_t.shape
mat = paddle.rand([N, C, 1, 1])
mat = paddle.where(mat < self.lambda_mgd, 0, 1).astype("float32")
masked_fea = paddle.multiply(pred_s, mat)
new_fea = self.generation(masked_fea)
dis_loss = loss_mse(new_fea, pred_t)
return dis_loss