44 lines
1.6 KiB
Python
44 lines
1.6 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
import paddle
|
|
|
|
|
|
class NpairsLoss(paddle.nn.Layer):
|
|
"""Npair_loss_
|
|
paper [Improved deep metric learning with multi-class N-pair loss objective](https://dl.acm.org/doi/10.5555/3157096.3157304)
|
|
code reference: https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/losses/metric_learning/npairs_loss
|
|
"""
|
|
|
|
def __init__(self, reg_lambda=0.01):
|
|
super(NpairsLoss, self).__init__()
|
|
self.reg_lambda = reg_lambda
|
|
|
|
def forward(self, input, target=None):
|
|
"""
|
|
anchor and positive(should include label)
|
|
"""
|
|
features = input["features"]
|
|
reg_lambda = self.reg_lambda
|
|
batch_size = features.shape[0]
|
|
fea_dim = features.shape[1]
|
|
num_class = batch_size // 2
|
|
|
|
#reshape
|
|
out_feas = paddle.reshape(features, shape=[-1, 2, fea_dim])
|
|
anc_feas, pos_feas = paddle.split(out_feas, num_or_sections=2, axis=1)
|
|
anc_feas = paddle.squeeze(anc_feas, axis=1)
|
|
pos_feas = paddle.squeeze(pos_feas, axis=1)
|
|
|
|
#get simi matrix
|
|
similarity_matrix = paddle.matmul(
|
|
anc_feas, pos_feas, transpose_y=True) #get similarity matrix
|
|
sparse_labels = paddle.arange(0, num_class, dtype='int64')
|
|
xentloss = paddle.nn.CrossEntropyLoss()(
|
|
similarity_matrix, sparse_labels) #by default: mean
|
|
|
|
#l2 norm
|
|
reg = paddle.mean(paddle.sum(paddle.square(features), axis=1))
|
|
l2loss = 0.5 * reg_lambda * reg
|
|
return {"npairsloss": xentloss + l2loss}
|