71 lines
2.4 KiB
Markdown
71 lines
2.4 KiB
Markdown
|
||
# 从训练到推理部署工具链测试方法介绍
|
||
|
||
test.sh和config文件夹下的txt文件配合使用,完成Clas模型从训练到预测的流程测试。
|
||
|
||
# 安装依赖
|
||
- 安装PaddlePaddle >= 2.0
|
||
- 安装PaddleClass依赖
|
||
```
|
||
pip3 install -r ../requirements.txt
|
||
```
|
||
- 安装autolog
|
||
```
|
||
git clone https://github.com/LDOUBLEV/AutoLog
|
||
cd AutoLog
|
||
pip3 install -r requirements.txt
|
||
python3 setup.py bdist_wheel
|
||
pip3 install ./dist/auto_log-1.0.0-py3-none-any.whl
|
||
cd ../
|
||
```
|
||
|
||
# 目录介绍
|
||
|
||
```bash
|
||
tests/
|
||
├── config # 测试模型的参数配置文件
|
||
| |--- *.txt
|
||
└── prepare.sh # 完成test.sh运行所需要的数据和模型下载
|
||
└── test.sh # 测试主程序
|
||
```
|
||
|
||
# 使用方法
|
||
|
||
test.sh包四种运行模式,每种模式的运行数据不同,分别用于测试速度和精度,分别是:
|
||
|
||
- 模式1:lite_train_infer,使用少量数据训练,用于快速验证训练到预测的走通流程,不验证精度和速度;
|
||
```shell
|
||
bash tests/prepare.sh ./tests/config/ResNet50_vd.txt 'lite_train_infer'
|
||
bash tests/test.sh ./tests/config/ResNet50_vd.txt 'lite_train_infer'
|
||
```
|
||
|
||
- 模式2:whole_infer,使用少量数据训练,一定量数据预测,用于验证训练后的模型执行预测,预测速度是否合理;
|
||
```shell
|
||
bash tests/prepare.sh ./tests/config/ResNet50_vd.txt 'whole_infer'
|
||
bash tests/test.sh ./tests/config/ResNet50_vd.txt 'whole_infer'
|
||
```
|
||
|
||
- 模式3:infer 不训练,全量数据预测,走通开源模型评估、动转静,检查inference model预测时间和精度;
|
||
```shell
|
||
bash tests/prepare.sh ./tests/config/ResNet50_vd.txt 'infer'
|
||
# 用法1:
|
||
bash tests/test.sh ./tests/config/ResNet50_vd.txt 'infer'
|
||
```
|
||
|
||
需注意的是,模型的离线量化需使用`infer`模式进行测试
|
||
|
||
- 模式4:whole_train_infer , CE: 全量数据训练,全量数据预测,验证模型训练精度,预测精度,预测速度;
|
||
```shell
|
||
bash tests/prepare.sh ./tests/config/ResNet50_vd.txt 'whole_train_infer'
|
||
bash tests/test.sh ./tests/config/ResNet50_vd.txt 'whole_train_infer'
|
||
```
|
||
|
||
- 模式5:cpp_infer , CE: 验证inference model的c++预测是否走通;
|
||
```shell
|
||
bash tests/prepare.sh ./tests/config/ResNet50_vd.txt 'cpp_infer'
|
||
bash tests/test.sh ./tests/config/ResNet50_vd.txt 'cpp_infer'
|
||
```
|
||
|
||
# 日志输出
|
||
最终在```tests/output```目录下生成.log后缀的日志文件
|