2.2 KiB
2.2 KiB
版本更新信息
目录
1. v2.3
-
模型更新
- 添加轻量化模型预训练权重,包括检测模型、特征模型
- 发布 PP-LCNet 系列模型,此系列模型是专门在 CPU 上设计运行的自研模型
- SwinTransformer、Twins、Deit 支持从 scrach 直接训练,达到论文精度
-
框架基础能力
- 添加 DeepHash 模块,支持特征模型直接输出二值特征
- 添加 PKSampler,特征模型不能多机多卡的训练的问题
- 支持 PaddleSlim:支持分类模型、特征模型的量化、裁剪训练及离线量化功能
- Legendary models 支持模型中间结果输出
- 支持多标签分类训练
-
预测部署
- 使用 Faiss 替换原有特征检索库,提升平台适配性
- 支持 PaddleServing:支持分类模型、图像识别流程的部署
-
推荐库版本
- python 版本:3.7
- PaddlePaddle 版本:2.1.3
- PaddleSlim 版本:2.2.0
- PaddleServing 版本:0.6.1
2. v2.2
- 模型更新
- 添加 LeViT、Twins、TNT、DLA、HardNet、RedNet、SwinTransfomer 模型
- 框架基础能力
- 将分类模型分为两类
- legendary models:引入 TheseusLayer 基类,及增加了修改网络功能接口,同时支持网络截断输出功能
- model zoo:其他普通分类模型
- 添加 Metric Learning 算法支持
- 添加多种相关 Loss 算法,及基础网络模块 gears(支持与 backbone、loss 组合)方便使用
- 同时支持普通分类及 metric learning 相关任务训练
- 支持静态图训练
- 分类训练支持 dali 加速
- 支持 fp16 训练
- 将分类模型分为两类
- 应用更新
- 添加商品识别、车辆识别(车辆细粒度分类、车辆 ReID)、logo 识别、动漫人物识别应用具体案例及相关模型
- 添加图像识别完整 pipeline,包含检测模块、特征提取模块、向量检索模块
- 预测部署
- 添加百度自研向量检索模块 Mobius,支持图像识别系统预测部署
- 图像识别,建立特征库支持 batch_size>1
- 文档更新
- 添加图像识别相关文档
- 修复之前文档 bug
- 推荐库版本
- python 版本:3.7
- PaddlePaddle:2.1.2