6.9 KiB
6.9 KiB
EfficientNet与ResNeXt101_wsl系列
概述
在预测时,图像的crop_size和resize_short_size如下表所示。
Models | crop_size | resize_short_size |
---|---|---|
ResNeXt101_32x8d_wsl | 224 | 224 |
ResNeXt101_32x16d_wsl | 224 | 224 |
ResNeXt101_32x32d_wsl | 224 | 224 |
ResNeXt101_32x48d_wsl | 224 | 224 |
Fix_ResNeXt101_32x48d_wsl | 320 | 320 |
EfficientNetB0 | 224 | 256 |
EfficientNetB1 | 240 | 272 |
EfficientNetB2 | 260 | 292 |
EfficientNetB3 | 300 | 332 |
EfficientNetB4 | 380 | 412 |
EfficientNetB5 | 456 | 488 |
EfficientNetB6 | 528 | 560 |
EfficientNetB7 | 600 | 632 |
EfficientNetB0_small | 224 | 256 |
精度、FLOPS和参数量
Models | Top1 | Top5 | Reference top1 |
Reference top5 |
FLOPS (G) |
Parameters (M) |
---|---|---|---|---|---|---|
ResNeXt101_ 32x8d_wsl |
0.826 | 0.967 | 0.822 | 0.964 | 29.140 | 78.440 |
ResNeXt101_ 32x16d_wsl |
0.842 | 0.973 | 0.842 | 0.972 | 57.550 | 152.660 |
ResNeXt101_ 32x32d_wsl |
0.850 | 0.976 | 0.851 | 0.975 | 115.170 | 303.110 |
ResNeXt101_ 32x48d_wsl |
0.854 | 0.977 | 0.854 | 0.976 | 173.580 | 456.200 |
Fix_ResNeXt101_ 32x48d_wsl |
0.863 | 0.980 | 0.864 | 0.980 | 354.230 | 456.200 |
EfficientNetB0 | 0.774 | 0.933 | 0.773 | 0.935 | 0.720 | 5.100 |
EfficientNetB1 | 0.792 | 0.944 | 0.792 | 0.945 | 1.270 | 7.520 |
EfficientNetB2 | 0.799 | 0.947 | 0.803 | 0.950 | 1.850 | 8.810 |
EfficientNetB3 | 0.812 | 0.954 | 0.817 | 0.956 | 3.430 | 11.840 |
EfficientNetB4 | 0.829 | 0.962 | 0.830 | 0.963 | 8.290 | 18.760 |
EfficientNetB5 | 0.836 | 0.967 | 0.837 | 0.967 | 19.510 | 29.610 |
EfficientNetB6 | 0.840 | 0.969 | 0.842 | 0.968 | 36.270 | 42.000 |
EfficientNetB7 | 0.843 | 0.969 | 0.844 | 0.971 | 72.350 | 64.920 |
EfficientNetB0_ small |
0.758 | 0.926 | 0.720 | 4.650 |
FP16预测速度
Models | batch_size=1 (ms) |
batch_size=4 (ms) |
batch_size=8 (ms) |
batch_size=32 (ms) |
---|---|---|---|---|
ResNeXt101_ 32x8d_wsl |
16.063 | 16.342 | 24.914 | 45.035 |
ResNeXt101_ 32x16d_wsl |
16.471 | 25.235 | 30.762 | 67.869 |
ResNeXt101_ 32x32d_wsl |
29.425 | 37.149 | 50.834 | |
ResNeXt101_ 32x48d_wsl |
40.311 | 58.414 | ||
Fix_ResNeXt101_ 32x48d_wsl |
43.960 | 86.514 | ||
EfficientNetB0 | 1.759 | 2.748 | 3.761 | 10.178 |
EfficientNetB1 | 2.592 | 4.122 | 5.829 | 16.262 |
EfficientNetB2 | 2.866 | 4.715 | 7.064 | 20.954 |
EfficientNetB3 | 3.869 | 6.815 | 10.672 | 34.097 |
EfficientNetB4 | 5.626 | 11.937 | 19.753 | 67.436 |
EfficientNetB5 | 8.907 | 21.685 | 37.248 | 134.185 |
EfficientNetB6 | 13.591 | 34.093 | 60.976 | |
EfficientNetB7 | 20.963 | 56.397 | 103.971 | |
EfficientNetB0_ small |
1.039 | 1.665 | 2.493 | 7.748 |
FP32预测速度
Models | batch_size=1 (ms) |
batch_size=4 (ms) |
batch_size=8 (ms) |
batch_size=32 (ms) |
---|---|---|---|---|
ResNeXt101_ 32x8d_wsl |
16.325 | 25.633 | 37.196 | 108.535 |
ResNeXt101_ 32x16d_wsl |
25.224 | 40.929 | 62.898 | |
ResNeXt101_ 32x32d_wsl |
41.047 | 79.575 | ||
ResNeXt101_ 32x48d_wsl |
60.610 | |||
Fix_ResNeXt101_ 32x48d_wsl |
80.280 | |||
EfficientNetB0 | 1.902 | 3.296 | 4.361 | 11.319 |
EfficientNetB1 | 2.908 | 5.093 | 6.900 | 18.015 |
EfficientNetB2 | 3.324 | 5.832 | 8.357 | 23.371 |
EfficientNetB3 | 4.557 | 8.526 | 12.485 | 38.124 |
EfficientNetB4 | 6.767 | 14.742 | 23.218 | 77.590 |
EfficientNetB5 | 11.097 | 26.642 | 43.590 | |
EfficientNetB6 | 17.582 | 42.408 | 74.336 | |
EfficientNetB7 | 26.529 | 70.337 | 126.839 | |
EfficientNetB0_ small |
1.171 | 2.026 | 2.906 | 8.506 |