PaddleClas/docs/zh_cn/models/EfficientNet_and_ResNeXt101...

6.9 KiB
Raw Blame History

EfficientNet与ResNeXt101_wsl系列

概述

正在持续更新中......

在预测时图像的crop_size和resize_short_size如下表所示。

Models crop_size resize_short_size
ResNeXt101_32x8d_wsl 224 224
ResNeXt101_32x16d_wsl 224 224
ResNeXt101_32x32d_wsl 224 224
ResNeXt101_32x48d_wsl 224 224
Fix_ResNeXt101_32x48d_wsl 320 320
EfficientNetB0 224 256
EfficientNetB1 240 272
EfficientNetB2 260 292
EfficientNetB3 300 332
EfficientNetB4 380 412
EfficientNetB5 456 488
EfficientNetB6 528 560
EfficientNetB7 600 632
EfficientNetB0_small 224 256

精度、FLOPS和参数量

Models Top1 Top5 Reference
top1
Reference
top5
FLOPS
(G)
Parameters
(M)
ResNeXt101_
32x8d_wsl
0.826 0.967 0.822 0.964 29.140 78.440
ResNeXt101_
32x16d_wsl
0.842 0.973 0.842 0.972 57.550 152.660
ResNeXt101_
32x32d_wsl
0.850 0.976 0.851 0.975 115.170 303.110
ResNeXt101_
32x48d_wsl
0.854 0.977 0.854 0.976 173.580 456.200
Fix_ResNeXt101_
32x48d_wsl
0.863 0.980 0.864 0.980 354.230 456.200
EfficientNetB0 0.774 0.933 0.773 0.935 0.720 5.100
EfficientNetB1 0.792 0.944 0.792 0.945 1.270 7.520
EfficientNetB2 0.799 0.947 0.803 0.950 1.850 8.810
EfficientNetB3 0.812 0.954 0.817 0.956 3.430 11.840
EfficientNetB4 0.829 0.962 0.830 0.963 8.290 18.760
EfficientNetB5 0.836 0.967 0.837 0.967 19.510 29.610
EfficientNetB6 0.840 0.969 0.842 0.968 36.270 42.000
EfficientNetB7 0.843 0.969 0.844 0.971 72.350 64.920
EfficientNetB0_
small
0.758 0.926 0.720 4.650

FP16预测速度

Models batch_size=1
(ms)
batch_size=4
(ms)
batch_size=8
(ms)
batch_size=32
(ms)
ResNeXt101_
32x8d_wsl
16.063 16.342 24.914 45.035
ResNeXt101_
32x16d_wsl
16.471 25.235 30.762 67.869
ResNeXt101_
32x32d_wsl
29.425 37.149 50.834
ResNeXt101_
32x48d_wsl
40.311 58.414
Fix_ResNeXt101_
32x48d_wsl
43.960 86.514
EfficientNetB0 1.759 2.748 3.761 10.178
EfficientNetB1 2.592 4.122 5.829 16.262
EfficientNetB2 2.866 4.715 7.064 20.954
EfficientNetB3 3.869 6.815 10.672 34.097
EfficientNetB4 5.626 11.937 19.753 67.436
EfficientNetB5 8.907 21.685 37.248 134.185
EfficientNetB6 13.591 34.093 60.976
EfficientNetB7 20.963 56.397 103.971
EfficientNetB0_
small
1.039 1.665 2.493 7.748

FP32预测速度

Models batch_size=1
(ms)
batch_size=4
(ms)
batch_size=8
(ms)
batch_size=32
(ms)
ResNeXt101_
32x8d_wsl
16.325 25.633 37.196 108.535
ResNeXt101_
32x16d_wsl
25.224 40.929 62.898
ResNeXt101_
32x32d_wsl
41.047 79.575
ResNeXt101_
32x48d_wsl
60.610
Fix_ResNeXt101_
32x48d_wsl
80.280
EfficientNetB0 1.902 3.296 4.361 11.319
EfficientNetB1 2.908 5.093 6.900 18.015
EfficientNetB2 3.324 5.832 8.357 23.371
EfficientNetB3 4.557 8.526 12.485 38.124
EfficientNetB4 6.767 14.742 23.218 77.590
EfficientNetB5 11.097 26.642 43.590
EfficientNetB6 17.582 42.408 74.336
EfficientNetB7 26.529 70.337 126.839
EfficientNetB0_
small
1.171 2.026 2.906 8.506