PaddleClas/docs/zh_cn/models/Others.md

4.2 KiB
Raw Blame History

其他模型

概述

正在持续更新中......

DarkNet53在预测时图像的crop_size设置为256resize_short_size设置为256其余模型在预测时图像的crop_size设置为224resize_short_size设置为256。

精度、FLOPS和参数量

Models Top1 Top5 Reference
top1
Reference
top5
FLOPS
(G)
Parameters
(M)
AlexNet 0.567 0.792 0.5720 1.370 61.090
SqueezeNet1_0 0.596 0.817 0.575 1.550 1.240
SqueezeNet1_1 0.601 0.819 0.690 1.230
VGG11 0.693 0.891 15.090 132.850
VGG13 0.700 0.894 22.480 133.030
VGG16 0.720 0.907 0.715 0.901 30.810 138.340
VGG19 0.726 0.909 39.130 143.650
DarkNet53 0.780 0.941 0.772 0.938 18.580 41.600
ResNet50_ACNet 0.767 0.932 10.730 33.110
ResNet50_ACNet
_deploy
0.767 0.932 8.190 25.550

FP16预测速度

Models batch_size=1
(ms)
batch_size=4
(ms)
batch_size=8
(ms)
batch_size=32
(ms)
AlexNet 0.684 0.740 0.810 1.481
SqueezeNet1_0 0.545 0.841 1.146 3.501
SqueezeNet1_1 0.473 0.575 0.805 1.862
VGG11 1.096 1.655 2.396 6.728
VGG13 1.216 2.059 3.056 9.468
VGG16 1.518 2.594 4.019 12.145
VGG19 1.817 3.124 4.886 14.958
DarkNet53 2.150 2.627 3.422 10.092
ResNet50_ACNet
_deploy
2.748 3.178 3.823 8.369

FP32预测速度

Models batch_size=1
(ms)
batch_size=4
(ms)
batch_size=8
(ms)
batch_size=32
(ms)
AlexNet 0.682 0.875 1.196 3.196
SqueezeNet1_0 0.530 1.072 1.652 5.338
SqueezeNet1_1 0.439 0.787 1.164 2.973
VGG11 1.575 3.638 6.427 23.227
VGG13 1.859 4.832 8.832 32.946
VGG16 2.316 6.420 11.936 44.719
VGG19 2.775 8.013 14.925 57.272
DarkNet53 2.648 5.727 9.616 33.664
ResNet50_ACNet
_deploy
4.544 6.873 9.627 28.283