PaddleClas/ppcls/modeling/architectures/alexnet.py

104 lines
4.2 KiB
Python

import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
import math
__all__ = ["AlexNet"]
class ConvPoolLayer(fluid.dygraph.Layer):
def __init__(self,
inputc_channels,
output_channels,
filter_size,
stride,
padding,
stdv,
groups=1,
act=None,
name=None):
super(ConvPoolLayer, self).__init__()
self._conv = Conv2D(num_channels=inputc_channels,
num_filters=output_channels,
filter_size=filter_size,
stride=stride,
padding=padding,
groups=groups,
param_attr=ParamAttr(name=name + "_weights",
initializer=fluid.initializer.Uniform(-stdv, stdv)),
bias_attr=ParamAttr(name=name + "_offset",
initializer=fluid.initializer.Uniform(-stdv, stdv)),
act=act)
self._pool = Pool2D(pool_size=3,
pool_stride=2,
pool_padding=0,
pool_type="max")
def forward(self, inputs):
x = self._conv(inputs)
x = self._pool(x)
return x
class AlexNetDY(fluid.dygraph.Layer):
def __init__(self, class_dim=1000):
super(AlexNetDY, self).__init__()
stdv = 1.0/math.sqrt(3*11*11)
self._conv1 = ConvPoolLayer(
3, 64, 11, 4, 2, stdv, act="relu", name="conv1")
stdv = 1.0/math.sqrt(64*5*5)
self._conv2 = ConvPoolLayer(
64, 192, 5, 1, 2, stdv, act="relu", name="conv2")
stdv = 1.0/math.sqrt(192*3*3)
self._conv3 = Conv2D(192, 384, 3, stride=1, padding=1,
param_attr=ParamAttr(name="conv3_weights", initializer=fluid.initializer.Uniform(-stdv, stdv)),
bias_attr=ParamAttr(name="conv3_offset", initializer=fluid.initializer.Uniform(-stdv, stdv)),
act="relu")
stdv = 1.0/math.sqrt(384*3*3)
self._conv4 = Conv2D(384, 256, 3, stride=1, padding=1,
param_attr=ParamAttr(name="conv4_weights", initializer=fluid.initializer.Uniform(-stdv, stdv)),
bias_attr=ParamAttr(name="conv4_offset", initializer=fluid.initializer.Uniform(-stdv, stdv)),
act="relu")
stdv = 1.0/math.sqrt(256*3*3)
self._conv5 = ConvPoolLayer(
256, 256, 3, 1, 1, stdv, act="relu", name="conv5")
stdv = 1.0/math.sqrt(256*6*6)
self._drop1 = Dropout(p=0.5)
self._fc6 = Linear(input_dim=256*6*6,
output_dim=4096,
param_attr=ParamAttr(name="fc6_weights", initializer=fluid.initializer.Uniform(-stdv, stdv)),
bias_attr=ParamAttr(name="fc6_offset", initializer=fluid.initializer.Uniform(-stdv, stdv)),
act="relu")
self._drop2 = Dropout(p=0.5)
self._fc7 = Linear(input_dim=4096,
output_dim=4096,
param_attr=ParamAttr(name="fc7_weights", initializer=fluid.initializer.Uniform(-stdv, stdv)),
bias_attr=ParamAttr(name="fc7_offset", initializer=fluid.initializer.Uniform(-stdv, stdv)),
act="relu")
self._fc8 = Linear(input_dim=4096,
output_dim=class_dim,
param_attr=ParamAttr(name="fc8_weights", initializer=fluid.initializer.Uniform(-stdv, stdv)),
bias_attr=ParamAttr(name="fc8_offset", initializer=fluid.initializer.Uniform(-stdv, stdv)))
def forward(self, inputs):
x = self._conv1(inputs)
x = self._conv2(x)
x = self._conv3(x)
x = self._conv4(x)
x = self._conv5(x)
x = fluid.layers.flatten(x, axis=0)
x = self._drop1(x)
x = self._fc6(x)
x = self._drop2(x)
x = self._fc7(x)
x = self._fc8(x)
return x
def AlexNet(**args):
model = AlexNetDY(**args)
return model