362 lines
12 KiB
Python
362 lines
12 KiB
Python
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import division
|
|
|
|
import os
|
|
|
|
import numpy as np
|
|
from nvidia.dali.pipeline import Pipeline
|
|
import nvidia.dali.ops as ops
|
|
import nvidia.dali.types as types
|
|
from nvidia.dali.plugin.paddle import DALIGenericIterator
|
|
|
|
import paddle
|
|
from paddle import fluid
|
|
|
|
|
|
class HybridTrainPipe(Pipeline):
|
|
def __init__(self,
|
|
file_root,
|
|
file_list,
|
|
batch_size,
|
|
resize_shorter,
|
|
crop,
|
|
min_area,
|
|
lower,
|
|
upper,
|
|
interp,
|
|
mean,
|
|
std,
|
|
device_id,
|
|
shard_id=0,
|
|
num_shards=1,
|
|
random_shuffle=True,
|
|
num_threads=4,
|
|
seed=42,
|
|
pad_output=False,
|
|
output_dtype=types.FLOAT):
|
|
super(HybridTrainPipe, self).__init__(
|
|
batch_size, num_threads, device_id, seed=seed)
|
|
self.input = ops.FileReader(
|
|
file_root=file_root,
|
|
file_list=file_list,
|
|
shard_id=shard_id,
|
|
num_shards=num_shards,
|
|
random_shuffle=random_shuffle)
|
|
# set internal nvJPEG buffers size to handle full-sized ImageNet images
|
|
# without additional reallocations
|
|
device_memory_padding = 211025920
|
|
host_memory_padding = 140544512
|
|
self.decode = ops.ImageDecoderRandomCrop(
|
|
device='mixed',
|
|
output_type=types.RGB,
|
|
device_memory_padding=device_memory_padding,
|
|
host_memory_padding=host_memory_padding,
|
|
random_aspect_ratio=[lower, upper],
|
|
random_area=[min_area, 1.0],
|
|
num_attempts=100)
|
|
self.res = ops.Resize(
|
|
device='gpu', resize_x=crop, resize_y=crop, interp_type=interp)
|
|
self.cmnp = ops.CropMirrorNormalize(
|
|
device="gpu",
|
|
output_dtype=output_dtype,
|
|
output_layout=types.NCHW,
|
|
crop=(crop, crop),
|
|
image_type=types.RGB,
|
|
mean=mean,
|
|
std=std,
|
|
pad_output=pad_output)
|
|
self.coin = ops.CoinFlip(probability=0.5)
|
|
self.to_int64 = ops.Cast(dtype=types.INT64, device="gpu")
|
|
|
|
def define_graph(self):
|
|
rng = self.coin()
|
|
jpegs, labels = self.input(name="Reader")
|
|
images = self.decode(jpegs)
|
|
images = self.res(images)
|
|
output = self.cmnp(images.gpu(), mirror=rng)
|
|
return [output, self.to_int64(labels.gpu())]
|
|
|
|
def __len__(self):
|
|
return self.epoch_size("Reader")
|
|
|
|
|
|
class HybridValPipe(Pipeline):
|
|
def __init__(self,
|
|
file_root,
|
|
file_list,
|
|
batch_size,
|
|
resize_shorter,
|
|
crop,
|
|
interp,
|
|
mean,
|
|
std,
|
|
device_id,
|
|
shard_id=0,
|
|
num_shards=1,
|
|
random_shuffle=False,
|
|
num_threads=4,
|
|
seed=42,
|
|
pad_output=False,
|
|
output_dtype=types.FLOAT):
|
|
super(HybridValPipe, self).__init__(
|
|
batch_size, num_threads, device_id, seed=seed)
|
|
self.input = ops.FileReader(
|
|
file_root=file_root,
|
|
file_list=file_list,
|
|
shard_id=shard_id,
|
|
num_shards=num_shards,
|
|
random_shuffle=random_shuffle)
|
|
self.decode = ops.ImageDecoder(device="mixed", output_type=types.RGB)
|
|
self.res = ops.Resize(
|
|
device="gpu", resize_shorter=resize_shorter, interp_type=interp)
|
|
self.cmnp = ops.CropMirrorNormalize(
|
|
device="gpu",
|
|
output_dtype=output_dtype,
|
|
output_layout=types.NCHW,
|
|
crop=(crop, crop),
|
|
image_type=types.RGB,
|
|
mean=mean,
|
|
std=std,
|
|
pad_output=pad_output)
|
|
self.to_int64 = ops.Cast(dtype=types.INT64, device="gpu")
|
|
|
|
def define_graph(self):
|
|
jpegs, labels = self.input(name="Reader")
|
|
images = self.decode(jpegs)
|
|
images = self.res(images)
|
|
output = self.cmnp(images)
|
|
return [output, self.to_int64(labels.gpu())]
|
|
|
|
def __len__(self):
|
|
return self.epoch_size("Reader")
|
|
|
|
|
|
def build(config, mode='train'):
|
|
env = os.environ
|
|
assert config.get('use_gpu',
|
|
True) == True, "gpu training is required for DALI"
|
|
assert not config.get(
|
|
'use_aa'), "auto augment is not supported by DALI reader"
|
|
assert float(env.get('FLAGS_fraction_of_gpu_memory_to_use', 0.92)) < 0.9, \
|
|
"Please leave enough GPU memory for DALI workspace, e.g., by setting" \
|
|
" `export FLAGS_fraction_of_gpu_memory_to_use=0.8`"
|
|
|
|
dataset_config = config[mode.upper()]
|
|
|
|
gpu_num = paddle.fluid.core.get_cuda_device_count() if (
|
|
'PADDLE_TRAINERS_NUM') and (
|
|
'PADDLE_TRAINER_ID'
|
|
) not in env else int(env.get('PADDLE_TRAINERS_NUM', 0))
|
|
|
|
batch_size = dataset_config.batch_size
|
|
assert batch_size % gpu_num == 0, \
|
|
"batch size must be multiple of number of devices"
|
|
batch_size = batch_size // gpu_num
|
|
|
|
file_root = dataset_config.data_dir
|
|
file_list = dataset_config.file_list
|
|
|
|
interp = 1 # settings.interpolation or 1 # default to linear
|
|
interp_map = {
|
|
0: types.INTERP_NN, # cv2.INTER_NEAREST
|
|
1: types.INTERP_LINEAR, # cv2.INTER_LINEAR
|
|
2: types.INTERP_CUBIC, # cv2.INTER_CUBIC
|
|
4: types.INTERP_LANCZOS3, # XXX use LANCZOS3 for cv2.INTER_LANCZOS4
|
|
}
|
|
|
|
output_dtype = (types.FLOAT16 if 'AMP' in config and
|
|
config.AMP.get("use_pure_fp16", False)
|
|
else types.FLOAT)
|
|
|
|
assert interp in interp_map, "interpolation method not supported by DALI"
|
|
interp = interp_map[interp]
|
|
pad_output = False
|
|
image_shape = config.get("image_shape", None)
|
|
if image_shape and image_shape[0] == 4:
|
|
pad_output = True
|
|
|
|
transforms = {
|
|
k: v
|
|
for d in dataset_config["transforms"] for k, v in d.items()
|
|
}
|
|
|
|
scale = transforms["NormalizeImage"].get("scale", 1.0 / 255)
|
|
if isinstance(scale, str):
|
|
scale = eval(scale)
|
|
mean = transforms["NormalizeImage"].get("mean", [0.485, 0.456, 0.406])
|
|
std = transforms["NormalizeImage"].get("std", [0.229, 0.224, 0.225])
|
|
mean = [v / scale for v in mean]
|
|
std = [v / scale for v in std]
|
|
|
|
if mode == "train":
|
|
resize_shorter = 256
|
|
crop = transforms["RandCropImage"]["size"]
|
|
scale = transforms["RandCropImage"].get("scale", [0.08, 1.])
|
|
ratio = transforms["RandCropImage"].get("ratio", [3.0 / 4, 4.0 / 3])
|
|
min_area = scale[0]
|
|
lower = ratio[0]
|
|
upper = ratio[1]
|
|
|
|
if 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env:
|
|
shard_id = int(env['PADDLE_TRAINER_ID'])
|
|
num_shards = int(env['PADDLE_TRAINERS_NUM'])
|
|
device_id = int(env['FLAGS_selected_gpus'])
|
|
pipe = HybridTrainPipe(
|
|
file_root,
|
|
file_list,
|
|
batch_size,
|
|
resize_shorter,
|
|
crop,
|
|
min_area,
|
|
lower,
|
|
upper,
|
|
interp,
|
|
mean,
|
|
std,
|
|
device_id,
|
|
shard_id,
|
|
num_shards,
|
|
seed=42 + shard_id,
|
|
pad_output=pad_output,
|
|
output_dtype=output_dtype)
|
|
pipe.build()
|
|
pipelines = [pipe]
|
|
sample_per_shard = len(pipe) // num_shards
|
|
else:
|
|
pipelines = []
|
|
places = fluid.framework.cuda_places()
|
|
num_shards = len(places)
|
|
for idx, p in enumerate(places):
|
|
place = fluid.core.Place()
|
|
place.set_place(p)
|
|
device_id = place.gpu_device_id()
|
|
pipe = HybridTrainPipe(
|
|
file_root,
|
|
file_list,
|
|
batch_size,
|
|
resize_shorter,
|
|
crop,
|
|
min_area,
|
|
lower,
|
|
upper,
|
|
interp,
|
|
mean,
|
|
std,
|
|
device_id,
|
|
idx,
|
|
num_shards,
|
|
seed=42 + idx,
|
|
pad_output=pad_output,
|
|
output_dtype=output_dtype)
|
|
pipe.build()
|
|
pipelines.append(pipe)
|
|
sample_per_shard = len(pipelines[0])
|
|
return DALIGenericIterator(
|
|
pipelines, ['feed_image', 'feed_label'], size=sample_per_shard)
|
|
else:
|
|
resize_shorter = transforms["ResizeImage"].get("resize_short", 256)
|
|
crop = transforms["CropImage"]["size"]
|
|
|
|
p = fluid.framework.cuda_places()[0]
|
|
place = fluid.core.Place()
|
|
place.set_place(p)
|
|
device_id = place.gpu_device_id()
|
|
pipe = HybridValPipe(
|
|
file_root,
|
|
file_list,
|
|
batch_size,
|
|
resize_shorter,
|
|
crop,
|
|
interp,
|
|
mean,
|
|
std,
|
|
device_id=device_id,
|
|
pad_output=pad_output,
|
|
output_dtype=output_dtype)
|
|
pipe.build()
|
|
return DALIGenericIterator(
|
|
pipe, ['feed_image', 'feed_label'],
|
|
size=len(pipe),
|
|
dynamic_shape=True,
|
|
fill_last_batch=True,
|
|
last_batch_padded=True)
|
|
|
|
|
|
def train(config):
|
|
return build(config, 'train')
|
|
|
|
|
|
def val(config):
|
|
return build(config, 'valid')
|
|
|
|
|
|
def _to_Tensor(lod_tensor, dtype):
|
|
data_tensor = fluid.layers.create_tensor(dtype=dtype)
|
|
data = np.array(lod_tensor).astype(dtype)
|
|
fluid.layers.assign(data, data_tensor)
|
|
return data_tensor
|
|
|
|
|
|
def normalize(feeds, config):
|
|
image, label = feeds['image'], feeds['label']
|
|
img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
|
|
img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
|
|
image = fluid.layers.cast(image, 'float32')
|
|
costant = fluid.layers.fill_constant(
|
|
shape=[1], value=255.0, dtype='float32')
|
|
image = fluid.layers.elementwise_div(image, costant)
|
|
|
|
mean = fluid.layers.create_tensor(dtype="float32")
|
|
fluid.layers.assign(input=img_mean.astype("float32"), output=mean)
|
|
std = fluid.layers.create_tensor(dtype="float32")
|
|
fluid.layers.assign(input=img_std.astype("float32"), output=std)
|
|
|
|
image = fluid.layers.elementwise_sub(image, mean)
|
|
image = fluid.layers.elementwise_div(image, std)
|
|
|
|
image.stop_gradient = True
|
|
feeds['image'] = image
|
|
|
|
return feeds
|
|
|
|
|
|
def mix(feeds, config, is_train=True):
|
|
env = os.environ
|
|
gpu_num = paddle.fluid.core.get_cuda_device_count() if (
|
|
'PADDLE_TRAINERS_NUM') and (
|
|
'PADDLE_TRAINER_ID'
|
|
) not in env else int(env.get('PADDLE_TRAINERS_NUM', 0))
|
|
|
|
batch_size = config.TRAIN.batch_size // gpu_num
|
|
|
|
images = feeds['image']
|
|
label = feeds['label']
|
|
# TODO: hard code here, should be fixed!
|
|
alpha = 0.2
|
|
idx = _to_Tensor(np.random.permutation(batch_size), 'int32')
|
|
lam = np.random.beta(alpha, alpha)
|
|
|
|
images = lam * images + (1 - lam) * paddle.fluid.layers.gather(images, idx)
|
|
|
|
feed = {
|
|
'image': images,
|
|
'feed_y_a': label,
|
|
'feed_y_b': paddle.fluid.layers.gather(label, idx),
|
|
'feed_lam': _to_Tensor([lam] * batch_size, 'float32')
|
|
}
|
|
|
|
return feed if is_train else feeds
|