mirror of
https://github.com/PaddlePaddle/PaddleClas.git
synced 2025-05-25 18:30:28 +08:00
add the config of orientation model add the preprocess op RandomRot90 that can rotate the img and return the orientation add the CustomLabelDataset that support getting label by preprocess refactor some preprocess ops to support dict parameter and return dict
155 lines
5.6 KiB
Python
155 lines
5.6 KiB
Python
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import inspect
|
|
import copy
|
|
import paddle
|
|
import numpy as np
|
|
from paddle.io import DistributedBatchSampler, BatchSampler, DataLoader
|
|
from ppcls.utils import logger
|
|
|
|
from ppcls.data import dataloader
|
|
# dataset
|
|
from ppcls.data.dataloader.imagenet_dataset import ImageNetDataset
|
|
from ppcls.data.dataloader.multilabel_dataset import MultiLabelDataset
|
|
from ppcls.data.dataloader.common_dataset import create_operators
|
|
from ppcls.data.dataloader.vehicle_dataset import CompCars, VeriWild
|
|
from ppcls.data.dataloader.logo_dataset import LogoDataset
|
|
from ppcls.data.dataloader.icartoon_dataset import ICartoonDataset
|
|
from ppcls.data.dataloader.mix_dataset import MixDataset
|
|
from ppcls.data.dataloader.multi_scale_dataset import MultiScaleDataset
|
|
from ppcls.data.dataloader.person_dataset import Market1501, MSMT17
|
|
from ppcls.data.dataloader.face_dataset import FiveValidationDataset, AdaFaceDataset
|
|
from ppcls.data.dataloader.custom_label_dataset import CustomLabelDataset
|
|
|
|
# sampler
|
|
from ppcls.data.dataloader.DistributedRandomIdentitySampler import DistributedRandomIdentitySampler
|
|
from ppcls.data.dataloader.pk_sampler import PKSampler
|
|
from ppcls.data.dataloader.mix_sampler import MixSampler
|
|
from ppcls.data.dataloader.multi_scale_sampler import MultiScaleSampler
|
|
from ppcls.data import preprocess
|
|
from ppcls.data.preprocess import transform
|
|
|
|
|
|
def create_operators(params, class_num=None):
|
|
"""
|
|
create operators based on the config
|
|
|
|
Args:
|
|
params(list): a dict list, used to create some operators
|
|
"""
|
|
assert isinstance(params, list), ('operator config should be a list')
|
|
ops = []
|
|
for operator in params:
|
|
assert isinstance(operator,
|
|
dict) and len(operator) == 1, "yaml format error"
|
|
op_name = list(operator)[0]
|
|
param = {} if operator[op_name] is None else operator[op_name]
|
|
op_func = getattr(preprocess, op_name)
|
|
if "class_num" in inspect.getfullargspec(op_func).args:
|
|
param.update({"class_num": class_num})
|
|
op = op_func(**param)
|
|
ops.append(op)
|
|
|
|
return ops
|
|
|
|
|
|
def build_dataloader(config, mode, device, use_dali=False, seed=None):
|
|
assert mode in [
|
|
'Train', 'Eval', 'Test', 'Gallery', 'Query'
|
|
], "Dataset mode should be Train, Eval, Test, Gallery, Query"
|
|
# build dataset
|
|
if use_dali:
|
|
from ppcls.data.dataloader.dali import dali_dataloader
|
|
return dali_dataloader(
|
|
config,
|
|
mode,
|
|
paddle.device.get_device(),
|
|
num_threads=config[mode]['loader']["num_workers"],
|
|
seed=seed)
|
|
|
|
class_num = config.get("class_num", None)
|
|
config_dataset = config[mode]['dataset']
|
|
config_dataset = copy.deepcopy(config_dataset)
|
|
dataset_name = config_dataset.pop('name')
|
|
if 'batch_transform_ops' in config_dataset:
|
|
batch_transform = config_dataset.pop('batch_transform_ops')
|
|
else:
|
|
batch_transform = None
|
|
|
|
dataset = eval(dataset_name)(**config_dataset)
|
|
|
|
logger.debug("build dataset({}) success...".format(dataset))
|
|
|
|
# build sampler
|
|
config_sampler = config[mode]['sampler']
|
|
if config_sampler and "name" not in config_sampler:
|
|
batch_sampler = None
|
|
batch_size = config_sampler["batch_size"]
|
|
drop_last = config_sampler["drop_last"]
|
|
shuffle = config_sampler["shuffle"]
|
|
else:
|
|
sampler_name = config_sampler.pop("name")
|
|
batch_sampler = eval(sampler_name)(dataset, **config_sampler)
|
|
|
|
logger.debug("build batch_sampler({}) success...".format(batch_sampler))
|
|
|
|
# build batch operator
|
|
def mix_collate_fn(batch):
|
|
batch = transform(batch, batch_ops)
|
|
# batch each field
|
|
slots = []
|
|
for items in batch:
|
|
for i, item in enumerate(items):
|
|
if len(slots) < len(items):
|
|
slots.append([item])
|
|
else:
|
|
slots[i].append(item)
|
|
return [np.stack(slot, axis=0) for slot in slots]
|
|
|
|
if isinstance(batch_transform, list):
|
|
batch_ops = create_operators(batch_transform, class_num)
|
|
batch_collate_fn = mix_collate_fn
|
|
else:
|
|
batch_collate_fn = None
|
|
|
|
# build dataloader
|
|
config_loader = config[mode]['loader']
|
|
num_workers = config_loader["num_workers"]
|
|
use_shared_memory = config_loader["use_shared_memory"]
|
|
|
|
if batch_sampler is None:
|
|
data_loader = DataLoader(
|
|
dataset=dataset,
|
|
places=device,
|
|
num_workers=num_workers,
|
|
return_list=True,
|
|
use_shared_memory=use_shared_memory,
|
|
batch_size=batch_size,
|
|
shuffle=shuffle,
|
|
drop_last=drop_last,
|
|
collate_fn=batch_collate_fn)
|
|
else:
|
|
data_loader = DataLoader(
|
|
dataset=dataset,
|
|
places=device,
|
|
num_workers=num_workers,
|
|
return_list=True,
|
|
use_shared_memory=use_shared_memory,
|
|
batch_sampler=batch_sampler,
|
|
collate_fn=batch_collate_fn)
|
|
|
|
logger.debug("build data_loader({}) success...".format(data_loader))
|
|
return data_loader
|