PaddleClas/ppcls/data/dataloader/attr_dataset.py

83 lines
2.9 KiB
Python

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import os
import pickle
from .common_dataset import CommonDataset
from ppcls.data.preprocess import transform
class AttrDataset(CommonDataset):
def _load_anno(self, seed=None, split='trainval'):
assert os.path.exists(self._cls_path)
assert os.path.exists(self._img_root)
anno_path = self._cls_path
image_dir = self._img_root
self.images = []
self.labels = []
dataset_info = pickle.load(open(anno_path, 'rb+'))
img_id = dataset_info.image_name
attr_label = dataset_info.label
attr_label[attr_label == 2] = 0
attr_id = dataset_info.attr_name
if 'label_idx' in dataset_info.keys():
eval_attr_idx = dataset_info.label_idx.eval
attr_label = attr_label[:, eval_attr_idx]
attr_id = [attr_id[i] for i in eval_attr_idx]
attr_num = len(attr_id)
# mapping category name to class id
# first_class:0, second_class:1, ...
cname2cid = {attr_id[i]: i for i in range(attr_num)}
assert split in dataset_info.partition.keys(
), f'split {split} is not exist'
img_idx = dataset_info.partition[split]
if isinstance(img_idx, list):
img_idx = img_idx[0] # default partition 0
img_num = img_idx.shape[0]
img_id = [img_id[i] for i in img_idx]
label = attr_label[img_idx] # [:, [0, 12]]
self.label_ratio = label.mean(0)
print("label_ratio:", self.label_ratio)
for i, (img_i, label_i) in enumerate(zip(img_id, label)):
imgname = os.path.join(image_dir, img_i)
self.images.append(imgname)
self.labels.append(np.int64(label_i))
def __getitem__(self, idx):
try:
with open(self.images[idx], 'rb') as f:
img = f.read()
if self._transform_ops:
img = transform(img, self._transform_ops)
img = img.transpose((2, 0, 1))
return (img, [self.labels[idx], self.label_ratio])
except Exception as ex:
logger.error("Exception occured when parse line: {} with msg: {}".
format(self.images[idx], ex))
rnd_idx = np.random.randint(self.__len__())
return self.__getitem__(rnd_idx)