PaddleClas/ppcls/utils/config.py

327 lines
11 KiB
Python

# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import copy
import argparse
import yaml
from . import logger
from . import check
from collections import OrderedDict
__all__ = ['get_config', 'convert_to_dict']
def convert_to_dict(obj):
if isinstance(obj, dict):
return {k: convert_to_dict(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [convert_to_dict(i) for i in obj]
else:
return obj
class AttrDict(dict):
def __getattr__(self, key):
return self[key]
def __setattr__(self, key, value):
if key in self.__dict__:
self.__dict__[key] = value
else:
self[key] = value
def __deepcopy__(self, content):
return AttrDict(copy.deepcopy(dict(self)))
def create_attr_dict(yaml_config):
from ast import literal_eval
for key, value in yaml_config.items():
if type(value) is dict:
yaml_config[key] = value = AttrDict(value)
if isinstance(value, str):
try:
value = literal_eval(value)
except BaseException:
pass
if isinstance(value, AttrDict):
create_attr_dict(yaml_config[key])
else:
yaml_config[key] = value
def parse_config(cfg_file):
"""Load a config file into AttrDict"""
with open(cfg_file, 'r') as fopen:
yaml_config = AttrDict(yaml.load(fopen, Loader=yaml.SafeLoader))
create_attr_dict(yaml_config)
return yaml_config
def print_dict(d, delimiter=0):
"""
Recursively visualize a dict and
indenting acrrording by the relationship of keys.
"""
placeholder = "-" * 60
for k, v in d.items():
if isinstance(v, dict):
logger.info("{}{} : ".format(delimiter * " ", k))
print_dict(v, delimiter + 4)
elif isinstance(v, list) and len(v) >= 1 and isinstance(v[0], dict):
logger.info("{}{} : ".format(delimiter * " ", k))
for value in v:
print_dict(value, delimiter + 4)
else:
logger.info("{}{} : {}".format(delimiter * " ", k, v))
if k[0].isupper() and delimiter == 0:
logger.info(placeholder)
def print_config(config):
"""
visualize configs
Arguments:
config: configs
"""
logger.advertise()
print_dict(config)
def check_config(config):
"""
Check config
"""
check.check_version()
use_gpu = config.get('use_gpu', True)
if use_gpu:
check.check_gpu()
architecture = config.get('ARCHITECTURE')
#check.check_architecture(architecture)
use_mix = config.get('use_mix', False)
check.check_mix(architecture, use_mix)
classes_num = config.get('classes_num')
check.check_classes_num(classes_num)
mode = config.get('mode', 'train')
if mode.lower() == 'train':
check.check_function_params(config, 'LEARNING_RATE')
check.check_function_params(config, 'OPTIMIZER')
def override(dl, ks, v):
"""
Recursively replace dict of list
Args:
dl(dict or list): dict or list to be replaced
ks(list): list of keys
v(str): value to be replaced
"""
def str2num(v):
try:
return eval(v)
except Exception:
return v
assert isinstance(dl, (list, dict)), ("{} should be a list or a dict")
assert len(ks) > 0, ('lenght of keys should larger than 0')
if isinstance(dl, list):
k = str2num(ks[0])
if len(ks) == 1:
assert k < len(dl), ('index({}) out of range({})'.format(k, dl))
dl[k] = str2num(v)
else:
override(dl[k], ks[1:], v)
else:
if len(ks) == 1:
# assert ks[0] in dl, ('{} is not exist in {}'.format(ks[0], dl))
if not ks[0] in dl:
print('A new field ({}) detected!'.format(ks[0], dl))
dl[ks[0]] = str2num(v)
else:
if ks[0] not in dl.keys():
dl[ks[0]] = {}
print("A new Series field ({}) detected!".format(ks[0], dl))
override(dl[ks[0]], ks[1:], v)
def override_config(config, options=None):
"""
Recursively override the config
Args:
config(dict): dict to be replaced
options(list): list of pairs(key0.key1.idx.key2=value)
such as: [
'topk=2',
'VALID.transforms.1.ResizeImage.resize_short=300'
]
Returns:
config(dict): replaced config
"""
if options is not None:
for opt in options:
assert isinstance(opt, str), (
"option({}) should be a str".format(opt))
assert "=" in opt, (
"option({}) should contain a ="
"to distinguish between key and value".format(opt))
pair = opt.split('=')
assert len(pair) == 2, ("there can be only a = in the option")
key, value = pair
keys = key.split('.')
override(config, keys, value)
return config
def get_config(fname, overrides=None, show=False):
"""
Read config from file
"""
assert os.path.exists(fname), ('config file({}) is not exist'.format(fname))
config = parse_config(fname)
override_config(config, overrides)
if show:
print_config(config)
# check_config(config)
return config
def parse_args():
parser = argparse.ArgumentParser("generic-image-rec train script")
parser.add_argument(
'-c',
'--config',
type=str,
default='configs/config.yaml',
help='config file path')
parser.add_argument(
'-o',
'--override',
action='append',
default=[],
help='config options to be overridden')
parser.add_argument(
'-p',
'--profiler_options',
type=str,
default=None,
help='The option of profiler, which should be in format \"key1=value1;key2=value2;key3=value3\".'
)
args = parser.parse_args()
return args
def represent_dictionary_order(self, dict_data):
return self.represent_mapping('tag:yaml.org,2002:map', dict_data.items())
def setup_orderdict():
yaml.add_representer(OrderedDict, represent_dictionary_order)
def dump_infer_config(inference_config, path):
setup_orderdict()
infer_cfg = OrderedDict()
config = copy.deepcopy(inference_config)
if config["Global"].get("pdx_model_name", None):
infer_cfg["Global"] = {"model_name": config["Global"]["pdx_model_name"]}
if config.get("Infer"):
transforms = config["Infer"]["transforms"]
elif config["DataLoader"]["Eval"].get("Query"):
transforms = config["DataLoader"]["Eval"]["Query"]["dataset"][
"transform_ops"]
transforms.append({"ToCHWImage": None})
elif config["DataLoader"]["Eval"].get("dataset"):
transforms = config["DataLoader"]["Eval"]["dataset"]["transform_ops"]
transforms.append({"ToCHWImage": None})
else:
logger.error("This config does not support dump transform config!")
transform = next((item for item in transforms if 'CropImage' in item), None)
if transform:
dynamic_shapes = transform["CropImage"]["size"]
else:
transform = next((item for item in transforms
if 'ResizeImage' in item), None)
if transform:
if isinstance(transform["ResizeImage"]["size"], list):
dynamic_shapes = transform["ResizeImage"]["size"][0]
elif isinstance(transform["ResizeImage"]["size"], int):
dynamic_shapes = transform["ResizeImage"]["size"]
else:
raise ValueError(
"ResizeImage size must be either a list or an int.")
else:
raise ValueError("No valid transform found.")
# Configuration required config for high-performance inference.
if config["Global"].get("hpi_config_path", None):
hpi_config = convert_to_dict(
parse_config(config["Global"]["hpi_config_path"]))
if hpi_config["Hpi"]["backend_config"].get("paddle_tensorrt", None):
hpi_config["Hpi"]["backend_config"]["paddle_tensorrt"][
"dynamic_shapes"]["x"] = [[
1, 3, dynamic_shapes, dynamic_shapes
] for i in range(3)]
hpi_config["Hpi"]["backend_config"]["paddle_tensorrt"][
"max_batch_size"] = 1
if hpi_config["Hpi"]["backend_config"].get("tensorrt", None):
hpi_config["Hpi"]["backend_config"]["tensorrt"]["dynamic_shapes"][
"x"] = [[1, 3, dynamic_shapes, dynamic_shapes]
for i in range(3)]
hpi_config["Hpi"]["backend_config"]["tensorrt"][
"max_batch_size"] = 1
infer_cfg["Hpi"] = hpi_config["Hpi"]
for transform in transforms:
if "NormalizeImage" in transform:
transform["NormalizeImage"]["channel_num"] = 3
scale_str = transform["NormalizeImage"]["scale"]
numerator, denominator = scale_str.split('/')
numerator, denominator = float(numerator), float(denominator)
transform["NormalizeImage"]["scale"] = float(numerator /
denominator)
infer_cfg["PreProcess"] = {
"transform_ops": [
infer_preprocess for infer_preprocess in transforms
if "DecodeImage" not in infer_preprocess
]
}
if config.get("Infer"):
postprocess_dict = config["Infer"]["PostProcess"]
with open(postprocess_dict["class_id_map_file"], 'r') as f:
label_id_maps = f.readlines()
label_names = []
for line in label_id_maps:
line = line.strip().split(' ', 1)
label_names.append(line[1:][0])
postprocess_name = postprocess_dict.get("name", None)
postprocess_dict.pop("class_id_map_file")
postprocess_dict.pop("name")
dic = OrderedDict()
for item in postprocess_dict.items():
dic[item[0]] = item[1]
dic['label_list'] = label_names
if postprocess_name:
infer_cfg["PostProcess"] = {postprocess_name: dic}
else:
raise ValueError("PostProcess name is not specified")
else:
infer_cfg["PostProcess"] = {"NormalizeFeatures": None}
with open(path, 'w') as f:
yaml.dump(infer_cfg, f)
logger.info("Export inference config file to {}".format(os.path.join(path)))