PaddleClas/ppcls/modeling/architectures/resnest.py

642 lines
18 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle.fluid as fluid
from paddle.fluid.initializer import MSRA, ConstantInitializer
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.regularizer import L2DecayRegularizer
import math
__all__ = [
'ResNeSt50', 'ResNeSt101', 'ResNeSt200', 'ResNeSt269',
'ResNeSt50_fast_1s1x64d', 'ResNeSt50_fast_2s1x64d',
'ResNeSt50_fast_4s1x64d', 'ResNeSt50_fast_1s2x40d',
'ResNeSt50_fast_2s2x40d', 'ResNeSt50_fast_2s2x40d',
'ResNeSt50_fast_4s2x40d', 'ResNeSt50_fast_1s4x24d'
]
class ResNeSt():
def __init__(self,
layers,
radix=1,
groups=1,
bottleneck_width=64,
dilated=False,
dilation=1,
deep_stem=False,
stem_width=64,
avg_down=False,
rectify_avg=False,
avd=False,
avd_first=False,
final_drop=0.0,
last_gamma=False,
bn_decay=0.0):
self.cardinality = groups
self.bottleneck_width = bottleneck_width
# ResNet-D params
self.inplanes = stem_width * 2 if deep_stem else 64
self.avg_down = avg_down
self.last_gamma = last_gamma
# ResNeSt params
self.radix = radix
self.avd = avd
self.avd_first = avd_first
self.deep_stem = deep_stem
self.stem_width = stem_width
self.layers = layers
self.final_drop = final_drop
self.dilated = dilated
self.dilation = dilation
self.bn_decay = bn_decay
self.rectify_avg = rectify_avg
def net(self, input, class_dim=1000):
if self.deep_stem:
x = self.conv_bn_layer(
x=input,
num_filters=self.stem_width,
filters_size=3,
stride=2,
groups=1,
act="relu",
name="conv1")
x = self.conv_bn_layer(
x=x,
num_filters=self.stem_width,
filters_size=3,
stride=1,
groups=1,
act="relu",
name="conv2")
x = self.conv_bn_layer(
x=x,
num_filters=self.stem_width * 2,
filters_size=3,
stride=1,
groups=1,
act="relu",
name="conv3")
else:
x = self.conv_bn_layer(
x=input,
num_filters=64,
filters_size=7,
stride=2,
act="relu",
name="conv1")
x = fluid.layers.pool2d(
input=x,
pool_size=3,
pool_type="max",
pool_stride=2,
pool_padding=1)
x = self.resnest_layer(
x=x,
planes=64,
blocks=self.layers[0],
is_first=False,
name="layer1")
x = self.resnest_layer(
x=x, planes=128, blocks=self.layers[1], stride=2, name="layer2")
if self.dilated or self.dilation == 4:
x = self.resnest_layer(
x=x,
planes=256,
blocks=self.layers[2],
stride=1,
dilation=2,
name="layer3")
x = self.resnest_layer(
x=x,
planes=512,
blocks=self.layers[3],
stride=1,
dilation=4,
name="layer4")
elif self.dilation == 2:
x = self.resnest_layer(
x=x,
planes=256,
blocks=self.layers[2],
stride=2,
dilation=1,
name="layer3")
x = self.resnest_layer(
x=x,
planes=512,
blocks=self.layers[3],
stride=1,
dilation=2,
name="layer4")
else:
x = self.resnest_layer(
x=x,
planes=256,
blocks=self.layers[2],
stride=2,
name="layer3")
x = self.resnest_layer(
x=x,
planes=512,
blocks=self.layers[3],
stride=2,
name="layer4")
x = fluid.layers.pool2d(input=x, pool_type="avg", global_pooling=True)
x = fluid.layers.dropout(x=x, dropout_prob=self.final_drop)
stdv = 1.0 / math.sqrt(x.shape[1] * 1.0)
x = fluid.layers.fc(
input=x,
size=class_dim,
param_attr=ParamAttr(
name="fc_weights",
initializer=fluid.initializer.Uniform(-stdv, stdv)),
bias_attr=ParamAttr(name="fc_offset"))
return x
def conv_bn_layer(self,
x,
num_filters,
filters_size,
stride=1,
groups=1,
act=None,
name=None):
x = fluid.layers.conv2d(
input=x,
num_filters=num_filters,
filter_size=filters_size,
stride=stride,
padding=(filters_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(
initializer=MSRA(), name=name + "_weight"),
bias_attr=False)
x = fluid.layers.batch_norm(
input=x,
act=act,
param_attr=ParamAttr(
name=name + "_scale",
regularizer=L2DecayRegularizer(
regularization_coeff=self.bn_decay)),
bias_attr=ParamAttr(
name=name + "_offset",
regularizer=L2DecayRegularizer(
regularization_coeff=self.bn_decay)),
moving_mean_name=name + "_mean",
moving_variance_name=name + "_variance")
return x
def rsoftmax(self, x, radix, cardinality):
batch, r, h, w = x.shape
if radix > 1:
x = fluid.layers.reshape(
x=x,
shape=[
0, cardinality, radix, int(r * h * w / cardinality / radix)
])
x = fluid.layers.transpose(x=x, perm=[0, 2, 1, 3])
x = fluid.layers.softmax(input=x, axis=1)
x = fluid.layers.reshape(x=x, shape=[0, r * h * w])
else:
x = fluid.layers.sigmoid(x=x)
return x
def splat_conv(self,
x,
in_channels,
channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
radix=2,
reduction_factor=4,
rectify_avg=False,
name=None):
x = self.conv_bn_layer(
x=x,
num_filters=channels * radix,
filters_size=kernel_size,
stride=stride,
groups=groups * radix,
act="relu",
name=name + "_splat1")
batch, rchannel = x.shape[:2]
if radix > 1:
splited = fluid.layers.split(input=x, num_or_sections=radix, dim=1)
gap = fluid.layers.sum(x=splited)
else:
gap = x
gap = fluid.layers.pool2d(
input=gap, pool_type="avg", global_pooling=True)
inter_channels = int(max(in_channels * radix // reduction_factor, 32))
gap = self.conv_bn_layer(
x=gap,
num_filters=inter_channels,
filters_size=1,
groups=groups,
act="relu",
name=name + "_splat2")
atten = fluid.layers.conv2d(
input=gap,
num_filters=channels * radix,
filter_size=1,
stride=1,
padding=0,
groups=groups,
act=None,
param_attr=ParamAttr(
name=name + "_splat_weights", initializer=MSRA()),
bias_attr=False)
atten = self.rsoftmax(x=atten, radix=radix, cardinality=groups)
atten = fluid.layers.reshape(x=atten, shape=[-1, atten.shape[1], 1, 1])
if radix > 1:
attens = fluid.layers.split(
input=atten, num_or_sections=radix, dim=1)
out = fluid.layers.sum([
fluid.layers.elementwise_mul(
x=split, y=att) for (att, split) in zip(attens, splited)
])
else:
out = fluid.layers.elementwise_mul(x, atten)
return out
def bottleneck(self,
x,
inplanes,
planes,
stride=1,
radix=1,
cardinality=1,
bottleneck_width=64,
avd=False,
avd_first=False,
dilation=1,
is_first=False,
rectify_avg=False,
last_gamma=False,
name=None):
short = x
group_width = int(planes * (bottleneck_width / 64.)) * cardinality
x = self.conv_bn_layer(
x=x,
num_filters=group_width,
filters_size=1,
stride=1,
groups=1,
act="relu",
name=name + "_conv1")
if avd and avd_first and (stride > 1 or is_first):
x = fluid.layers.pool2d(
input=x,
pool_size=3,
pool_type="avg",
pool_stride=stride,
pool_padding=1)
if radix >= 1:
x = self.splat_conv(
x=x,
in_channels=group_width,
channels=group_width,
kernel_size=3,
stride=1,
padding=dilation,
dilation=dilation,
groups=cardinality,
bias=False,
radix=radix,
rectify_avg=rectify_avg,
name=name + "_splatconv")
else:
x = self.conv_bn_layer(
x=x,
num_filters=group_width,
filters_size=3,
stride=1,
padding=dilation,
dilation=dialtion,
groups=cardinality,
act="relu",
name=name + "_conv2")
if avd and avd_first == False and (stride > 1 or is_first):
x = fluid.layers.pool2d(
input=x,
pool_size=3,
pool_type="avg",
pool_stride=stride,
pool_padding=1)
x = self.conv_bn_layer(
x=x,
num_filters=planes * 4,
filters_size=1,
stride=1,
groups=1,
act=None,
name=name + "_conv3")
if stride != 1 or self.inplanes != planes * 4:
if self.avg_down:
if dilation == 1:
short = fluid.layers.pool2d(
input=short,
pool_size=stride,
pool_type="avg",
pool_stride=stride,
ceil_mode=True)
else:
short = fluid.layers.pool2d(
input=short,
pool_size=1,
pool_type="avg",
pool_stride=1,
ceil_mode=True)
short = fluid.layers.conv2d(
input=short,
num_filters=planes * 4,
filter_size=1,
stride=1,
padding=0,
groups=1,
act=None,
param_attr=ParamAttr(
name=name + "_weights", initializer=MSRA()),
bias_attr=False)
else:
short = fluid.layers.conv2d(
input=short,
num_filters=planes * 4,
filter_size=1,
stride=stride,
param_attr=ParamAttr(
name=name + "_shortcut_weights", initializer=MSRA()),
bias_attr=False)
short = fluid.layers.batch_norm(
input=short,
act=None,
param_attr=ParamAttr(
name=name + "_shortcut_scale",
regularizer=L2DecayRegularizer(
regularization_coeff=self.bn_decay)),
bias_attr=ParamAttr(
name=name + "_shortcut_offset",
regularizer=L2DecayRegularizer(
regularization_coeff=self.bn_decay)),
moving_mean_name=name + "_shortcut_mean",
moving_variance_name=name + "_shortcut_variance")
return fluid.layers.elementwise_add(x=short, y=x, act="relu")
def resnest_layer(self,
x,
planes,
blocks,
stride=1,
dilation=1,
is_first=True,
name=None):
if dilation == 1 or dilation == 2:
x = self.bottleneck(
x=x,
inplanes=self.inplanes,
planes=planes,
stride=stride,
radix=self.radix,
cardinality=self.cardinality,
bottleneck_width=self.bottleneck_width,
avd=self.avd,
avd_first=self.avd_first,
dilation=1,
is_first=is_first,
rectify_avg=self.rectify_avg,
last_gamma=self.last_gamma,
name=name + "_bottleneck_0")
elif dilation == 4:
x = self.bottleneck(
x=x,
inplanes=self.inplanes,
planes=planes,
stride=stride,
radix=self.radix,
cardinality=self.cardinality,
bottleneck_width=self.bottleneck_width,
avd=self.avd,
avd_first=self.avd_first,
dilation=2,
is_first=is_first,
rectify_avg=self.rectify_avg,
last_gamma=self.last_gamma,
name=name + "_bottleneck_0")
else:
raise RuntimeError("=>unknown dilation size")
self.inplanes = planes * 4
for i in range(1, blocks):
name = name + "_bottleneck_" + str(i)
x = self.bottleneck(
x=x,
inplanes=self.inplanes,
planes=planes,
radix=self.radix,
cardinality=self.cardinality,
bottleneck_width=self.bottleneck_width,
avd=self.avd,
avd_first=self.avd_first,
dilation=dilation,
rectify_avg=self.rectify_avg,
last_gamma=self.last_gamma,
name=name)
return x
def ResNeSt50(**args):
model = ResNeSt(
layers=[3, 4, 6, 3],
radix=2,
groups=1,
bottleneck_width=64,
deep_stem=True,
stem_width=32,
avg_down=True,
avd=True,
avd_first=False,
final_drop=0.0,
**args)
return model
def ResNeSt101(**args):
model = ResNeSt(
layers=[3, 4, 23, 3],
radix=2,
groups=1,
bottleneck_width=64,
deep_stem=True,
stem_width=64,
avg_down=True,
avd=True,
avd_first=False,
final_drop=0.0,
**args)
return model
def ResNeSt200(**args):
model = ResNeSt(
layers=[3, 24, 36, 3],
radix=2,
groups=1,
bottleneck_width=64,
deep_stem=True,
stem_width=64,
avg_down=True,
avd=True,
avd_first=False,
final_drop=0.2,
**args)
return model
def ResNeSt269(**args):
model = ResNeSt(
layers=[3, 30, 48, 8],
radix=2,
groups=1,
bottleneck_width=64,
deep_stem=True,
stem_width=64,
avg_down=True,
avd=True,
avd_first=False,
final_drop=0.2,
**args)
return model
def ResNeSt50_fast_1s1x64d(**args):
model = ResNeSt(
layers=[3, 4, 6, 3],
radix=1,
groups=1,
bottleneck_width=64,
deep_stem=True,
stem_width=32,
avg_down=True,
avd=True,
avd_first=True,
final_drop=0.0,
**args)
return model
def ResNeSt50_fast_2s1x64d(**args):
model = ResNeSt(
layers=[3, 4, 6, 3],
radix=2,
groups=1,
bottleneck_width=64,
deep_stem=True,
stem_width=32,
avg_down=True,
avd=True,
avd_first=True,
final_drop=0.0,
**args)
return model
def ResNeSt50_fast_4s1x64d(**args):
model = ResNeSt(
layers=[3, 4, 6, 3],
radix=2,
groups=1,
bottleneck_width=64,
deep_stem=True,
stem_width=32,
avg_down=True,
avd=True,
avd_first=True,
final_drop=0.0,
**args)
return model
def ResNeSt50_fast_1s2x40d(**args):
model = ResNeSt(
layers=[3, 4, 6, 3],
radix=1,
groups=2,
bottleneck_width=40,
deep_stem=True,
stem_width=32,
avg_down=True,
avd=True,
avd_first=True,
final_drop=0.0,
**args)
return model
def ResNeSt50_fast_2s2x40d(**args):
model = ResNeSt(
layers=[3, 4, 6, 3],
radix=2,
groups=2,
bottleneck_width=40,
deep_stem=True,
stem_width=32,
avg_down=True,
avd=True,
avd_first=True,
final_drop=0.0,
**args)
return model
def ResNeSt50_fast_4s2x40d(**args):
model = ResNeSt(
layers=[3, 4, 6, 3],
radix=4,
groups=2,
bottleneck_width=40,
deep_stem=True,
stem_width=32,
avg_down=True,
avd=True,
avd_first=True,
final_drop=0.0,
**args)
return model
def ResNeSt50_fast_1s4x24d(**args):
model = ResNeSt(
layers=[3, 4, 6, 3],
radix=1,
groups=4,
bottleneck_width=24,
deep_stem=True,
stem_width=32,
avg_down=True,
avd=True,
avd_first=True,
final_drop=0.0,
**args)
return model