140 lines
4.2 KiB
C
140 lines
4.2 KiB
C
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "fastdeploy_capi/vision.h"
|
|
|
|
#ifdef WIN32
|
|
const char sep = '\\';
|
|
#else
|
|
const char sep = '/';
|
|
#endif
|
|
|
|
void CpuInfer(const char *model_dir, const char *image_file) {
|
|
char model_file[100];
|
|
char params_file[100];
|
|
char config_file[100];
|
|
int max_size = 99;
|
|
snprintf(model_file, max_size, "%s%c%s", model_dir, sep, "inference.pdmodel");
|
|
snprintf(params_file, max_size, "%s%c%s", model_dir, sep,
|
|
"inference.pdiparams");
|
|
snprintf(config_file, max_size, "%s%c%s", model_dir, sep,
|
|
"inference_cls.yaml");
|
|
|
|
FD_C_RuntimeOptionWrapper *option = FD_C_CreateRuntimeOptionWrapper();
|
|
FD_C_RuntimeOptionWrapperUseCpu(option);
|
|
|
|
FD_C_PaddleClasModelWrapper *model = FD_C_CreatePaddleClasModelWrapper(
|
|
model_file, params_file, config_file, option, FD_C_ModelFormat_PADDLE);
|
|
|
|
if (!FD_C_PaddleClasModelWrapperInitialized(model)) {
|
|
printf("Failed to initialize.\n");
|
|
FD_C_DestroyRuntimeOptionWrapper(option);
|
|
FD_C_DestroyPaddleClasModelWrapper(model);
|
|
return;
|
|
}
|
|
|
|
FD_C_Mat im = FD_C_Imread(image_file);
|
|
|
|
FD_C_ClassifyResult *result =
|
|
(FD_C_ClassifyResult *)malloc(sizeof(FD_C_ClassifyResult));
|
|
|
|
if (!FD_C_PaddleClasModelWrapperPredict(model, im, result)) {
|
|
printf("Failed to predict.\n");
|
|
FD_C_DestroyRuntimeOptionWrapper(option);
|
|
FD_C_DestroyPaddleClasModelWrapper(model);
|
|
FD_C_DestroyMat(im);
|
|
free(result);
|
|
return;
|
|
}
|
|
|
|
// print res
|
|
char res[2000];
|
|
FD_C_ClassifyResultStr(result, res);
|
|
printf("%s", res);
|
|
FD_C_DestroyRuntimeOptionWrapper(option);
|
|
FD_C_DestroyPaddleClasModelWrapper(model);
|
|
FD_C_DestroyClassifyResult(result);
|
|
FD_C_DestroyMat(im);
|
|
}
|
|
|
|
void GpuInfer(const char *model_dir, const char *image_file) {
|
|
char model_file[100];
|
|
char params_file[100];
|
|
char config_file[100];
|
|
int max_size = 99;
|
|
snprintf(model_file, max_size, "%s%c%s", model_dir, sep, "inference.pdmodel");
|
|
snprintf(params_file, max_size, "%s%c%s", model_dir, sep,
|
|
"inference.pdiparams");
|
|
snprintf(config_file, max_size, "%s%c%s", model_dir, sep,
|
|
"inference_cls.yaml");
|
|
|
|
FD_C_RuntimeOptionWrapper *option = FD_C_CreateRuntimeOptionWrapper();
|
|
FD_C_RuntimeOptionWrapperUseGpu(option, 0);
|
|
|
|
FD_C_PaddleClasModelWrapper *model = FD_C_CreatePaddleClasModelWrapper(
|
|
model_file, params_file, config_file, option, FD_C_ModelFormat_PADDLE);
|
|
|
|
if (!FD_C_PaddleClasModelWrapperInitialized(model)) {
|
|
printf("Failed to initialize.\n");
|
|
FD_C_DestroyRuntimeOptionWrapper(option);
|
|
FD_C_DestroyPaddleClasModelWrapper(model);
|
|
return;
|
|
}
|
|
|
|
FD_C_Mat im = FD_C_Imread(image_file);
|
|
|
|
FD_C_ClassifyResult *result =
|
|
(FD_C_ClassifyResult *)malloc(sizeof(FD_C_ClassifyResult));
|
|
|
|
if (!FD_C_PaddleClasModelWrapperPredict(model, im, result)) {
|
|
printf("Failed to predict.\n");
|
|
FD_C_DestroyRuntimeOptionWrapper(option);
|
|
FD_C_DestroyPaddleClasModelWrapper(model);
|
|
FD_C_DestroyMat(im);
|
|
free(result);
|
|
return;
|
|
}
|
|
|
|
// print res
|
|
char res[2000];
|
|
FD_C_ClassifyResultStr(result, res);
|
|
printf("%s", res);
|
|
FD_C_DestroyRuntimeOptionWrapper(option);
|
|
FD_C_DestroyPaddleClasModelWrapper(model);
|
|
FD_C_DestroyClassifyResult(result);
|
|
FD_C_DestroyMat(im);
|
|
}
|
|
|
|
int main(int argc, char *argv[]) {
|
|
if (argc < 4) {
|
|
printf("Usage: infer_demo path/to/model_dir path/to/image run_option, "
|
|
"e.g ./infer_model ./ppyoloe_model_dir ./test.jpeg 0"
|
|
"\n");
|
|
printf(
|
|
"The data type of run_option is int, 0: run with cpu; 1: run with gpu"
|
|
"\n");
|
|
return -1;
|
|
}
|
|
|
|
if (atoi(argv[3]) == 0) {
|
|
CpuInfer(argv[1], argv[2]);
|
|
} else if (atoi(argv[3]) == 1) {
|
|
GpuInfer(argv[1], argv[2]);
|
|
}
|
|
return 0;
|
|
}
|