PaddleClas/ppcls/configs/ImageNet/EfficientNetV2/EfficientNetV2_S.yaml

145 lines
3.1 KiB
YAML

# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: ./output/
device: gpu
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 350
print_batch_step: 20
use_visualdl: False
train_mode: progressive # progressive training
# used for static mode and model export
image_shape: [3, 384, 384]
save_inference_dir: ./inference
AMP:
scale_loss: 65536
use_dynamic_loss_scaling: True
# O1: mixed fp16, O2: pure fp16
level: O1
EMA:
decay: 0.9999
# model architecture
Arch:
name: EfficientNetV2_S
class_num: 1000
use_sync_bn: True
# loss function config for traing/eval process
Loss:
Train:
- CELoss:
weight: 1.0
epsilon: 0.1
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: Momentum
momentum: 0.9
lr:
name: Cosine
learning_rate: 0.65 # 8gpux128bs
warmup_epoch: 5
regularizer:
name: L2
coeff: 0.00001
# data loader for train and eval
DataLoader:
Train:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/train_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- RandCropImage:
size: 171
progress_size: [171, 214, 257, 300]
scale: [0.05, 1.0]
- RandFlipImage:
flip_code: 1
- RandAugmentV2:
num_layers: 2
magnitude: 5.0
progress_magnitude: [5.0, 8.3333333333, 11.66666666667, 15.0]
- NormalizeImage:
scale: 1.0
mean: [128.0, 128.0, 128.0]
std: [128.0, 128.0, 128.0]
order: ""
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: True
shuffle: True
loader:
num_workers: 8
use_shared_memory: True
Eval:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/val_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- CropImageAtRatio:
size: 384
pad: 32
interpolation: bilinear
- NormalizeImage:
scale: 1.0
mean: [128.0, 128.0, 128.0]
std: [128.0, 128.0, 128.0]
order: ""
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: False
shuffle: False
loader:
num_workers: 8
use_shared_memory: True
Infer:
infer_imgs: docs/images/inference_deployment/whl_demo.jpg
batch_size: 10
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
- CropImageAtRatio:
size: 384
pad: 32
interpolation: bilinear
- NormalizeImage:
scale: 1.0
mean: [128.0, 128.0, 128.0]
std: [128.0, 128.0, 128.0]
order: ""
PostProcess:
name: Topk
topk: 5
class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
Metric:
Train:
- TopkAcc:
topk: [1, 5]
Eval:
- TopkAcc:
topk: [1, 5]