PaddleClas/ppcls/configs/ImageNet/MobileViTV3/MobileViTV3_x1_0.yaml

173 lines
3.8 KiB
YAML

# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: ./output/
device: gpu
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 300
print_batch_step: 10
use_visualdl: False
# used for static mode and model export
image_shape: [3, 256, 256]
save_inference_dir: ./inference
use_dali: False
# mixed precision training
AMP:
scale_loss: 65536
use_dynamic_loss_scaling: True
# O1: mixed fp16, O2: pure fp16
level: O1
# model ema
EMA:
decay: 0.9995
# model architecture
Arch:
name: MobileViTV3_x1_0
class_num: 1000
classifier_dropout: 0.
# loss function config for traing/eval process
Loss:
Train:
- CELoss:
weight: 1.0
epsilon: 0.1
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: AdamW
beta1: 0.9
beta2: 0.999
epsilon: 1e-8
weight_decay: 0.05
one_dim_param_no_weight_decay: True
lr:
name: Cosine
learning_rate: 0.002 # for total batch size 1020 by referring to official
eta_min: 0.0002
warmup_epoch: 16 # 20000 iterations
warmup_start_lr: 1e-6
clip_norm: 10
# data loader for train and eval
DataLoader:
Train:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/train_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
backend: pil
- RandCropImage:
size: 256
interpolation: bicubic
backend: pil
use_log_aspect: True
- RandFlipImage:
flip_code: 1
- RandAugmentV3:
num_layers: 2
interpolation: bicubic
- NormalizeImage:
scale: 1.0/255.0
mean: [0.0, 0.0, 0.0]
std: [1.0, 1.0, 1.0]
order: ''
- RandomErasing:
EPSILON: 0.25
sl: 0.02
sh: 1.0/3.0
r1: 0.3
attempt: 10
use_log_aspect: True
mode: const
batch_transform_ops:
- OpSampler:
MixupOperator:
alpha: 0.2
prob: 0.25
CutmixOperator:
alpha: 1.0
prob: 0.25
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: False
shuffle: True
loader:
num_workers: 4
use_shared_memory: True
Eval:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/val_list.txt
transform_ops:
- DecodeImage:
to_np: False
channel_first: False
backend: pil
- ResizeImage:
resize_short: 288
interpolation: bicubic
backend: pil
- CropImage:
size: 256
- NormalizeImage:
scale: 1.0/255.0
mean: [0.0, 0.0, 0.0]
std: [1.0, 1.0, 1.0]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: False
shuffle: False
loader:
num_workers: 4
use_shared_memory: True
Infer:
infer_imgs: docs/images/inference_deployment/whl_demo.jpg
batch_size: 10
transforms:
- DecodeImage:
to_np: False
channel_first: False
backend: pil
- ResizeImage:
resize_short: 288
interpolation: bicubic
backend: pil
- CropImage:
size: 256
- NormalizeImage:
scale: 1.0/255.0
mean: [0.0, 0.0, 0.0]
std: [1.0, 1.0, 1.0]
order: ''
- ToCHWImage:
PostProcess:
name: Topk
topk: 5
class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
Metric:
Train:
- TopkAcc:
topk: [1, 5]
Eval:
- TopkAcc:
topk: [1, 5]