PaddleClas/ppcls/loss/distillationloss.py

287 lines
9.1 KiB
Python

#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from .celoss import CELoss
from .dmlloss import DMLLoss
from .distanceloss import DistanceLoss
from .rkdloss import RKdAngle, RkdDistance
from .kldivloss import KLDivLoss
from .dkdloss import DKDLoss
from .multilabelloss import MultiLabelLoss
class DistillationCELoss(CELoss):
"""
DistillationCELoss
"""
def __init__(self,
model_name_pairs=[],
epsilon=None,
key=None,
name="loss_ce"):
super().__init__(epsilon=epsilon)
assert isinstance(model_name_pairs, list)
self.key = key
self.model_name_pairs = model_name_pairs
self.name = name
def forward(self, predicts, batch):
loss_dict = dict()
for idx, pair in enumerate(self.model_name_pairs):
out1 = predicts[pair[0]]
out2 = predicts[pair[1]]
if self.key is not None:
out1 = out1[self.key]
out2 = out2[self.key]
loss = super().forward(out1, out2)
for key in loss:
loss_dict["{}_{}_{}".format(key, pair[0], pair[1])] = loss[key]
return loss_dict
class DistillationGTCELoss(CELoss):
"""
DistillationGTCELoss
"""
def __init__(self,
model_names=[],
epsilon=None,
key=None,
name="loss_gt_ce"):
super().__init__(epsilon=epsilon)
assert isinstance(model_names, list)
self.key = key
self.model_names = model_names
self.name = name
def forward(self, predicts, batch):
loss_dict = dict()
for name in self.model_names:
out = predicts[name]
if self.key is not None:
out = out[self.key]
loss = super().forward(out, batch)
for key in loss:
loss_dict["{}_{}".format(key, name)] = loss[key]
return loss_dict
class DistillationDMLLoss(DMLLoss):
"""
"""
def __init__(self,
model_name_pairs=[],
act="softmax",
weight_ratio=False,
sum_across_class_dim=False,
key=None,
name="loss_dml"):
super().__init__(act=act, sum_across_class_dim=sum_across_class_dim)
assert isinstance(model_name_pairs, list)
self.key = key
self.model_name_pairs = model_name_pairs
self.name = name
self.weight_ratio = weight_ratio
def forward(self, predicts, batch):
loss_dict = dict()
for idx, pair in enumerate(self.model_name_pairs):
out1 = predicts[pair[0]]
out2 = predicts[pair[1]]
if self.key is not None:
out1 = out1[self.key]
out2 = out2[self.key]
if self.weight_ratio is True:
loss = super().forward(out1, out2, batch)
else:
loss = super().forward(out1, out2)
if isinstance(loss, dict):
for key in loss:
loss_dict["{}_{}_{}_{}".format(key, pair[0], pair[1],
idx)] = loss[key]
else:
loss_dict["{}_{}".format(self.name, idx)] = loss
return loss_dict
class DistillationDistanceLoss(DistanceLoss):
"""
"""
def __init__(self,
mode="l2",
model_name_pairs=[],
act=None,
key=None,
name="loss_",
**kargs):
super().__init__(mode=mode, **kargs)
assert isinstance(model_name_pairs, list)
self.key = key
self.model_name_pairs = model_name_pairs
self.name = name + mode
assert act in [None, "sigmoid", "softmax"]
if act == "sigmoid":
self.act = nn.Sigmoid()
elif act == "softmax":
self.act = nn.Softmax(axis=-1)
else:
self.act = None
def forward(self, predicts, batch):
loss_dict = dict()
for idx, pair in enumerate(self.model_name_pairs):
out1 = predicts[pair[0]]
out2 = predicts[pair[1]]
if self.key is not None:
out1 = out1[self.key]
out2 = out2[self.key]
if self.act is not None:
out1 = self.act(out1)
out2 = self.act(out2)
loss = super().forward(out1, out2)
for key in loss:
loss_dict["{}_{}_{}".format(self.name, key, idx)] = loss[key]
return loss_dict
class DistillationRKDLoss(nn.Layer):
def __init__(self,
target_size=None,
model_name_pairs=(["Student", "Teacher"], ),
student_keepkeys=[],
teacher_keepkeys=[]):
super().__init__()
self.student_keepkeys = student_keepkeys
self.teacher_keepkeys = teacher_keepkeys
self.model_name_pairs = model_name_pairs
assert len(self.student_keepkeys) == len(self.teacher_keepkeys)
self.rkd_angle_loss = RKdAngle(target_size=target_size)
self.rkd_dist_loss = RkdDistance(target_size=target_size)
def __call__(self, predicts, batch):
loss_dict = {}
for m1, m2 in self.model_name_pairs:
for idx, (
student_name, teacher_name
) in enumerate(zip(self.student_keepkeys, self.teacher_keepkeys)):
student_out = predicts[m1][student_name]
teacher_out = predicts[m2][teacher_name]
loss_dict[f"loss_angle_{idx}_{m1}_{m2}"] = self.rkd_angle_loss(
student_out, teacher_out)
loss_dict[f"loss_dist_{idx}_{m1}_{m2}"] = self.rkd_dist_loss(
student_out, teacher_out)
return loss_dict
class DistillationKLDivLoss(KLDivLoss):
"""
DistillationKLDivLoss
"""
def __init__(self,
model_name_pairs=[],
temperature=4,
key=None,
name="loss_kl"):
super().__init__(temperature=temperature)
assert isinstance(model_name_pairs, list)
self.key = key
self.model_name_pairs = model_name_pairs
self.name = name
def forward(self, predicts, batch):
loss_dict = dict()
for idx, pair in enumerate(self.model_name_pairs):
out1 = predicts[pair[0]]
out2 = predicts[pair[1]]
if self.key is not None:
out1 = out1[self.key]
out2 = out2[self.key]
loss = super().forward(out1, out2)
for key in loss:
loss_dict["{}_{}_{}".format(key, pair[0], pair[1])] = loss[key]
return loss_dict
class DistillationDKDLoss(DKDLoss):
"""
DistillationDKDLoss
"""
def __init__(self,
model_name_pairs=[],
key=None,
temperature=1.0,
alpha=1.0,
beta=1.0,
name="loss_dkd"):
super().__init__(temperature=temperature, alpha=alpha, beta=beta)
self.key = key
self.model_name_pairs = model_name_pairs
self.name = name
def forward(self, predicts, batch):
loss_dict = dict()
for idx, pair in enumerate(self.model_name_pairs):
out1 = predicts[pair[0]]
out2 = predicts[pair[1]]
if self.key is not None:
out1 = out1[self.key]
out2 = out2[self.key]
loss = super().forward(out1, out2, batch)
loss_dict[f"{self.name}_{pair[0]}_{pair[1]}"] = loss
return loss_dict
class DistillationMultiLabelLoss(MultiLabelLoss):
"""
DistillationMultiLabelLoss
"""
def __init__(self,
model_names=[],
epsilon=None,
size_sum=False,
weight_ratio=False,
key=None,
name="loss_mll"):
super().__init__(
epsilon=epsilon, size_sum=size_sum, weight_ratio=weight_ratio)
assert isinstance(model_names, list)
self.key = key
self.model_names = model_names
self.name = name
def forward(self, predicts, batch):
loss_dict = dict()
for name in self.model_names:
out = predicts[name]
if self.key is not None:
out = out[self.key]
loss = super().forward(out, batch)
for key in loss:
loss_dict["{}_{}".format(key, name)] = loss[key]
return loss_dict