PaddleClas/test_tipc/static/ResNet50/benchmark_common/run_benchmark.sh

95 lines
5.1 KiB
Bash
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

#!/usr/bin/env bash
# Test training benchmark for a model.
# Usagebash run_benchmark.sh ${model_item} ${bs_item} ${fp_item} ${run_mode} ${device_num}
function _set_params(){
model_item=${1:-"model_item"} # (必选) 模型 item
base_batch_size=${2:-"2"} # (必选) 如果是静态图单进程则表示每张卡上的BS需在训练时*卡数
fp_item=${3:-"fp32"} # (必选) fp32|fp16
run_mode=${4:-"DP"} # (必选) MP模型并行|DP数据并行|PP流水线并行|混合并行DP1-MP1-PP1|DP1-MP4-PP1
device_num=${5:-"N1C1"} # (必选) 使用的卡数量N1C1|N1C8|N4C32 4机32卡
profiling=${PROFILING:-"false"} # (必选) Profiling 开关,默认关闭,通过全局变量传递
model_repo="PaddleClas" # (必选) 模型套件的名字
speed_unit="samples/sec" # (必选)速度指标单位
skip_steps=10 # (必选)解析日志跳过模型前几个性能不稳定的step
keyword="ips:" # (必选)解析日志,筛选出性能数据所在行的关键字
convergence_key="loss:" # (可选)解析日志,筛选出收敛数据所在行的关键字 如convergence_key="loss:"
max_epochs=${6:-"1"} # 可选需保证模型执行时间在5分钟内需要修改代码提前中断的直接提PR 合入套件或使用max_epoch参数
num_workers=${7:-"4"} # (可选)
# 以下为通用执行命令,无特殊可不用修改
model_name=${model_item}_bs${base_batch_size}_${fp_item}_${run_mode} # (必填) 且格式不要改动,与竞品名称对齐
device=${CUDA_VISIBLE_DEVICES//,/ }
arr=(${device})
num_gpu_devices=${#arr[*]}
run_log_path=${TRAIN_LOG_DIR:-$(pwd)} # (必填) TRAIN_LOG_DIR benchmark框架设置该参数为全局变量
profiling_log_path=${PROFILING_LOG_DIR:-$(pwd)} # (必填) PROFILING_LOG_DIR benchmark框架设置该参数为全局变量
speed_log_path=${LOG_PATH_INDEX_DIR:-$(pwd)}
train_log_file=${run_log_path}/${model_repo}_${model_name}_${device_num}_log
profiling_log_file=${profiling_log_path}/${model_repo}_${model_name}_${device_num}_profiling
speed_log_file=${speed_log_path}/${model_repo}_${model_name}_${device_num}_speed
}
function _train(){
batch_size=${base_batch_size} # 如果模型跑多卡单进程时,请在_train函数中计算出多卡需要的bs
echo "current CUDA_VISIBLE_DEVICES=${CUDA_VISIBLE_DEVICES}, model_name=${model_name}, device_num=${device_num}, is profiling=${profiling}"
if [ ${fp_item} = "fp32" ]; then
config_file="-c ppcls/configs/ImageNet/ResNet/ResNet50.yaml"
elif [ ${fp_item} = "amp_fp16" ]; then
config_file="-c ppcls/configs/ImageNet/ResNet/ResNet50_amp_O1_ultra.yaml"
elif [ ${fp_item} = "pure_fp16" ]; then
config_file="-c ppcls/configs/ImageNet/ResNet/ResNet50_amp_O2_ultra.yaml"
fi
if [ ${profiling} = "false" ]; then
profiling_config=""
log_file=${train_log_file}
else
profiling_config="--profiler_options=\"batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile\""
log_file=${profiling_log_file}
fi
train_cmd="${config_file} -o DataLoader.Train.sampler.batch_size=${base_batch_size} -o Global.epochs=${max_epochs} -o DataLoader.Train.loader.num_workers=${num_workers} ${profiling_config} -o Global.eval_during_train=False -o fuse_elewise_add_act_ops=True -o enable_addto=True"
# 以下为通用执行命令,无特殊可不用修改
case ${run_mode} in
DP) if [[ ${device_num} = "N1C1" ]];then
echo "run ${run_mode} ${device_num}"
train_cmd="python ppcls/static/train.py ${train_cmd}"
else
rm -rf ./mylog
train_cmd="python -m paddle.distributed.launch --gpus 0,1,2,3,4,5,6,7 ppcls/static/train.py ${train_cmd}"
fi
;;
DP1-MP1-PP1) echo "run run_mode: DP1-MP1-PP1" ;;
*) echo "choose run_mode "; exit 1;
esac
echo "train_cmd: ${train_cmd} log_file: ${log_file}"
timeout 10m ${train_cmd} > ${log_file} 2>&1
if [ $? -ne 0 ];then
echo -e "${model_name}, FAIL"
else
echo -e "${model_name}, SUCCESS"
fi
# kill -9 `ps -ef|grep 'python'|awk '{print $2}'`
if [ ${device_num} != "N1C1" -a -d mylog ]; then
rm ${log_file}
cp mylog/workerlog.0 ${log_file}
fi
cd ../
}
function _set_env(){
export FLAGS_fraction_of_gpu_memory_to_use=0.80
export FLAGS_cudnn_batchnorm_spatial_persistent=1
export FLAGS_max_inplace_grad_add=8
export FLAGS_cudnn_exhaustive_search=1
export FLAGS_eager_delete_tensor_gb=0.0
export FLAGS_conv_workspace_size_limit=4000
}
source ${BENCHMARK_ROOT}/scripts/run_model.sh # 在该脚本中会对符合benchmark规范的log使用analysis.py 脚本进行性能数据解析;如果不联调只想要产出训练log可以注掉本行,提交时需打开
_set_params $@
# _train # 如果只产出训练log,不解析,可取消注释
_set_env
_run # 该函数在run_model.sh中,执行时会调用_train; 如果不联调只产出训练log可以注掉本行,提交时需打开