PaddleClas/ppcls/utils/gallery2fc.py

94 lines
3.3 KiB
Python

import os
import paddle
import cv2
from ppcls.arch import build_model
from ppcls.arch.gears.identity_head import IdentityHead
from ppcls.utils.config import parse_config, parse_args
from ppcls.utils.save_load import load_dygraph_pretrain
from ppcls.utils.logger import init_logger
from ppcls.data import transform, create_operators
def build_gallery_layer(configs, feature_extractor):
transform_configs = configs["IndexProcess"]["transform_ops"]
preprocess_ops = create_operators(transform_configs)
embedding_size = configs["Arch"]["Head"]["embedding_size"]
batch_size = configs["IndexProcess"]["batch_size"]
image_shape = configs["Global"]["image_shape"]
image_shape.insert(0, batch_size)
input_tensor = paddle.zeros(image_shape)
image_root = configs["IndexProcess"]["image_root"]
data_file = configs["IndexProcess"]["data_file"]
delimiter = configs["IndexProcess"]["delimiter"]
gallery_images = []
gallery_docs = []
with open(data_file, 'r', encoding='utf-8') as f:
lines = f.readlines()
for _, ori_line in enumerate(lines):
line = ori_line.strip().split(delimiter)
text_num = len(line)
assert text_num >= 2, f"line({ori_line}) must be splitted into at least 2 parts, but got {text_num}"
image_file = os.path.join(image_root, line[0])
gallery_images.append(image_file)
gallery_docs.append(ori_line.strip())
batch_index = 0
gallery_feature = paddle.zeros((len(gallery_images), embedding_size))
for i, image_path in enumerate(gallery_images):
image = cv2.imread(image_path)
for op in preprocess_ops:
image = op(image)
input_tensor[batch_index] = image
batch_index += 1
if batch_index == batch_size or i == len(gallery_images) - 1:
batch_feature = feature_extractor(input_tensor)
for j in range(batch_index):
feature = batch_feature[j]
norm_feature = paddle.nn.functional.normalize(feature)
gallery_feature[i + batch_index - j] = norm_feature
gallery_layer = paddle.nn.Linear(embedding_size, len(gallery_images), weight_attr=gallery_feature, bias_attr=False)
return gallery_layer
def export_fuse_model(model, config):
model.eval()
model.quanter.save_quantized_model(
model.base_model,
save_path,
input_spec=[
paddle.static.InputSpec(
shape=[None] + config["Global"]["image_shape"],
dtype='float32')
])
class FuseModel(paddle.nn.Layer):
def __init__(self, configs):
super().__init__()
self.feature_extractor = build_model(configs)
load_dygraph_pretrain(self.feature_extractor, configs["Global"]["pretrained_model"])
self.feature_extractor.head = IdentityHead()
self.gallery_layer = build_gallery_layer(configs, self.feature_extractor)
def forward(self, x):
x = self.feature_model(x)["features"]
x = paddle.nn.functional.normalize(x)
x = self.gallery_layer(x)
return x
def main():
args = parse_args()
configs = parse_config(args.config)
init_logger(name='gallery2fc')
fuse_model = FuseModel(configs)
save_fuse_model(fuse_model)
if __name__ == '__main__':
main()