16 KiB
PULC 有人/无人分类模型
此处提供了用户使用 PaddleClas 的 超轻量图像分类方案(PULC, Practical Ultra Lightweight Classification) 快速构建轻量级、高精度、可落地的有人/无人的分类模型教程,主要基于有人/无人场景的数据,融合了轻量级骨干网络 PPLCNet、SSLD 预训练权重、EDA 数据增强策略、SKL-UGI 知识蒸馏策略、SHAS 超参数搜索策略,得到精度高、速度快、易于部署的二分类模型。
目录
1. 应用场景介绍
该案例提供了可以产出超轻量级二分类模型的方法。使用该方法训练得到的模型可以快速判断图片中是否有人,该模型可以广泛应用于如监控场景、人员进出管控场景、海量数据过滤场景等。
2. 模型快速体验
2.1 PULC 有人/无人分类模型介绍
下表列出了判断图片中是否有人的二分类模型的相关指标,其中,最后一行是根据 PULC 策略训练得到的模型,该模型与其他较大的模型相比,相同推理速度下拥有更高的精度,相同推理速度下拥有更高的精度。比如,与 SwinTransformer-tiny 相比,PULC 得到的模型相同在精度下,速度快 70+ 倍。训练方法和推理部署方法将在下面详细介绍。
模型 | 精度(%) | 延时(ms) | 存储(M) | 策略 |
---|---|---|---|---|
SwinTranformer_tiny | 95.69 | 175.52 | 107 | 使用ImageNet预训练模型 |
MobileNetV3_large_x1_0 | 91.97 | 4.70 | 17 | 使用ImageNet预训练模型 |
PPLCNet_x1_0 | 89.57 | 2.36 | 6.5 | 使用ImageNet预训练模型 |
PPLCNet_x1_0 | 92.10 | 2.36 | 6.5 | 使用SSLD预训练模型 |
PPLCNet_x1_0 | 93.43 | 2.36 | 6.5 | 使用SSLD预训练模型+EDA策略 |
PPLCNet_x1_0 | 95.60 | 2.36 | 6.5 | 使用SSLD预训练模型+EDA策略+SKL-UGI知识蒸馏策略 |
备注: 关于PPLCNet的介绍可以参考PPLCNet介绍,相关论文可以查阅PPLCNet paper。
2.2 环境配置
- 安装:请先参考 Paddle 安装教程 以及 PaddleClas 安装教程 配置 PaddleClas 运行环境。
2.3 模型推理预测
2.3.1 下载模型
- 进入
deploy
运行目录。
cd deploy
下载有人/无人分类的推理模型。
mkdir models
cd models
# 下载 inference 模型并解压
wget https://paddleclas.bj.bcebos.com/models/PULC/person_exists_infer.tar && tar -xf person_exists_infer.tar
解压完毕后,models
文件夹下应有如下文件结构:
├── person_exists_infer
│ ├── inference.pdiparams
│ ├── inference.pdiparams.info
│ └── inference.pdmodel
2.3.2 模型推理预测
2.3.2.1 预测单张图像
返回 deploy
目录:
cd ../
运行下面的命令,对图像 ./images/PULC/person_exists/objects365_02035329.jpg
进行有人/无人分类。
# 使用下面的命令使用 GPU 进行预测
python3.7 python/predict_cls.py -c configs/PULC/person_exists/inference_person_exists.yaml -o PostProcess.ThreshOutput.threshold=0.9794
# 使用下面的命令使用 CPU 进行预测
python3.7 python/predict_cls.py -c configs/PULC/person_exists/inference_person_exists.yaml -o PostProcess.ThreshOutput.threshold=0.9794 -o Global.use_gpu=False
输出结果如下。
objects365_02035329.jpg: class id(s): [1], score(s): [1.00], label_name(s): ['someone']
备注: 真实场景中往往需要在假正类率(Fpr)小于某一个指标下求真正类率(Tpr),该场景中的 val
数据集在千分之一 Fpr 下得到的最佳 Tpr 所得到的阈值为 0.9794
,故此处的 threshold
为 0.9794
。该阈值的确定方法可以参考3.2.1节备注部分。
2.3.2.2 基于文件夹的批量预测
如果希望预测文件夹内的图像,可以直接修改配置文件中的 Global.infer_imgs
字段,也可以通过下面的 -o
参数修改对应的配置。
# 使用下面的命令使用 GPU 进行预测,如果希望使用 CPU 预测,可以在命令后面添加 -o Global.use_gpu=False
python3.7 python/predict_cls.py -c configs/PULC/person_exists/inference_person_exists.yaml -o Global.infer_imgs="./images/PULC/person_exists/"
终端中会输出该文件夹内所有图像的分类结果,如下所示。
objects365_01780782.jpg: class id(s): [0], score(s): [1.00], label_name(s): ['nobody']
objects365_02035329.jpg: class id(s): [1], score(s): [1.00], label_name(s): ['someone']
其中,someone
表示该图里存在人,nobody
表示该图里不存在人。
3.PULC 有人/无人分类模型训练
3.1 数据准备
3.1.1 数据集来源
本案例中所使用的所有数据集均为开源数据,train
集合为MS-COCO 数据的训练集的子集,val
集合为Object365 数据的训练集的子集,ImageNet_val
为ImageNet-1k 数据的验证集。
3.1.2 数据集获取
在公开数据集的基础上经过后处理即可得到本案例需要的数据,具体处理方法如下:
-
训练集合,本案例处理了 MS-COCO 数据训练集的标注文件,如果某张图含有“人”的标签,且这个框的面积在整张图中的比例大于 10%,即认为该张图中含有人,如果某张图中没有“人”的标签,则认为该张图中不含有人。经过处理后,得到 92964 条可用数据,其中有人的数据有 39813 条,无人的数据 53151 条。
-
验证集合,从 Object365 数据中随机抽取一小部分数据,使用在 MS-COCO 上训练得到的较好的模型预测这些数据,将预测结果和数据的标注文件取交集,将交集的结果按照得到训练集的方法筛选出验证集合。经过处理后,得到 27820 条可用数据。其中有人的数据有 2255 条,无人的数据有 25565 条。
处理后的数据集部分数据可视化如下:
此处提供了经过上述方法处理好的数据,可以直接下载得到。
进入 PaddleClas 目录。
cd path_to_PaddleClas
进入 dataset/
目录,下载并解压有人/无人场景的数据。
cd dataset
wget https://paddleclas.bj.bcebos.com/data/PULC/person_exists.tar
tar -xf person_exists.tar
cd ../
执行上述命令后,dataset/
下存在 person_exists
目录,该目录中具有以下数据:
├── train
│ ├── 000000000009.jpg
│ ├── 000000000025.jpg
...
├── val
│ ├── objects365_01780637.jpg
│ ├── objects365_01780640.jpg
...
├── ImageNet_val
│ ├── ILSVRC2012_val_00000001.JPEG
│ ├── ILSVRC2012_val_00000002.JPEG
...
├── train_list.txt
├── train_list.txt.debug
├── train_list_for_distill.txt
├── val_list.txt
└── val_list.txt.debug
其中 train/
和 val/
分别为训练集和验证集。train_list.txt
和 val_list.txt
分别为训练集和验证集的标签文件,train_list.txt.debug
和 val_list.txt.debug
分别为训练集和验证集的 debug
标签文件,其分别是 train_list.txt
和 val_list.txt
的子集,用该文件可以快速体验本案例的流程。ImageNet_val/
是 ImageNet-1k 的验证集,该集合和 train
集合的混合数据用于本案例的 SKL-UGI知识蒸馏策略
,对应的训练标签文件为 train_list_for_distill.txt
。关于如何得到蒸馏的标签可以参考知识蒸馏标签获得。
3.2 模型训练
3.2.1 基于默认超参数训练轻量级模型
在 ppcls/configs/PULC/person_exists/PPLCNet_x1_0.yaml
中提供了基于该场景的训练配置,可以通过如下脚本启动训练:
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
-c ./ppcls/configs/PULC/person_exists/PPLCNet_x1_0.yaml
验证集的最佳指标在 0.94-0.95
之间(数据集较小,容易造成波动)。
备注:
-
此时使用的指标为Tpr,该指标描述了在假正类率(Fpr)小于某一个指标时的真正类率(Tpr),是产业中二分类问题常用的指标之一。在本案例中,Fpr 为千分之一。关于 Fpr 和 Tpr 的更多介绍,可以参考这里。
-
在eval时,会打印出来当前最佳的 TprAtFpr 指标,具体地,其会打印当前的
Fpr
、Tpr
值,以及当前的threshold
值,Tpr
值反映了在当前Fpr
值下的召回率,该值越高,代表模型越好。threshold
表示当前最佳Fpr
所对应的分类阈值,可用于后续模型部署落地等。
3.2.2 基于默认超参数训练教师模型
复用 ppcls/configs/PULC/person_exists/PPLCNet/PPLCNet_x1_0.yaml
中的超参数,训练教师模型,训练脚本如下:
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
-c ./ppcls/configs/PULC/person_exists/PPLCNet/PPLCNet_x1_0.yaml \
-o Arch.name=ResNet101_vd
验证集的最佳指标为 0.96-0.98
之间,当前教师模型最好的权重保存在 output/ResNet101_vd/best_model.pdparams
。
3.2.3 基于默认超参数进行蒸馏训练
配置文件ppcls/configs/PULC/person_exists/PPLCNet_x1_0_distillation.yaml
提供了SKL-UGI知识蒸馏策略
的配置。该配置将ResNet101_vd
当作教师模型,PPLCNet_x1_0
当作学生模型,使用ImageNet数据集的验证集作为新增的无标签数据。训练脚本如下:
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
-c ./ppcls/configs/PULC/person_exists/PPLCNet_x1_0_distillation.yaml \
-o Arch.models.0.Teacher.pretrained=output/ResNet101_vd/best_model
验证集的最佳指标为 0.95-0.97
之间,当前模型最好的权重保存在 output/DistillationModel/best_model_student.pdparams
。
备注:
- 此时的默认超参数是经过
SHAS超参数搜索策略
得到的,关于此部分内容,可以参考SHAS 超参数搜索策略。
4. 模型评估与推理部署
4.1 模型评估
训练好模型之后,可以通过以下命令实现对模型指标的评估。
python3 tools/eval.py \
-c ./ppcls/configs/PULC/person_exists/PPLCNet_x1_0.yaml \
-o Global.pretrained_model="output/DistillationModel/best_model_student"
4.2 模型预测
模型训练完成之后,可以加载训练得到的预训练模型,进行模型预测。在模型库的 tools/infer.py
中提供了完整的示例,只需执行下述命令即可完成模型预测:
python3 tools/infer.py \
-c ./ppcls/configs/PULC/person_exists/PPLCNet_x1_0.yaml \
-o Global.pretrained_model=output/DistillationModel/best_model_student \
-o Global.pretrained_model=Infer.PostProcess.threshold=0.9794
输出结果如下:
[{'class_ids': [0], 'scores': [0.9878496769815683], 'label_names': ['nobody'], 'file_name': './dataset/person_exists/val/objects365_01780637.jpg'}]
备注:
-
默认是对
deploy/images/PULC/person_exists/objects365_02035329.jpg
进行预测,此处也可以通过增加字段-o Infer.infer_imgs=xxx
对其他图片预测。 -
这里的
Infer.PostProcess.threshold
的值需要根据实际场景来确定,此处的0.9794
是在该场景中的val
数据集在千分之一 Fpr 下得到的最佳 Tpr 所得到的。
4.3 使用 inference 模型进行推理
4.3.1 导出 inference 模型
通过导出 inference 模型,PaddlePaddle 支持使用预测引擎进行预测推理。接下来介绍如何用预测引擎进行推理: 首先,对训练好的模型进行转换:
python3 tools/export_model.py \
-c ./ppcls/configs/PULC/person_exists/PPLCNet_x1_0.yaml \
-o Global.pretrained_model=output/DistillationModel/best_model_student \
-o Global.save_inference_dir=deploy/models/PPLCNet_x1_0_person_exists_infer
执行完该脚本后会在 deploy/models/
下生成 PPLCNet_x1_0_person_exists_infer
文件夹,该文件夹中的模型与 2.3 节下载的推理预测模型格式一致。
4.3.2 基于 inference 模型 python 推理预测
推理预测的脚本为:
python3.7 python/predict_cls.py -c configs/PULC/person_exists/inference_person_exists.yaml -o Global.inference_model_dir="models/PPLCNet_x1_0_person_exists_infer" -o PostProcess.ThreshOutput.threshold=0.9794
备注:
- 此处的
PostProcess.ThreshOutput.threshold
由eval时的最佳threshold
来确定。 - 更多关于推理的细节,可以参考2.3节。
4.3.3 基于 inference 模型 C++ 推理预测
PaddleClas 提供了 C++ 推理预测的示例,您可以参考服务器端 C++ 预测来完成相应的推理部署。如果您使用的是Windows平台,可以参考基于 Visual Studio 2019 Community CMake 编译指南完成相应的预测库编译和模型预测工作。
4.4 基于 Paddle Serving 完成模型服务化部署
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考模型服务化部署来完成相应的部署工作。
4.5 基于 Paddle Lite 完成模型端侧部署
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考端侧部署来 完成相应的部署工作。