This document introduces the configuration(filed in config/*.yaml) of PaddleClas.
Note: Some parameters do not appear in the yaml file (because they are not used for this file). During training or validation, you can use the command -o to update or add the specified parameters. For the example -o checkpoints=./ckp_path/ppcls, it means that the parameter checkpoints will be updated or added using the value ./ckp_path/ppcls.
Basic
name
detail
default value
optional value
mode
mode
"train"
["train"," valid"]
checkpoints
checkpoint model path for resuming training process
""
Str
last_epoch
last epoch for the training,used with checkpoints
-1
int
pretrained_model
pretrained model path
""
Str
load_static_weights
whether the pretrained model is saved in static mode
False
bool
model_save_dir
model stored path
""
Str
classes_num
class number
1000
int
total_images
total images
1281167
int
save_interval
save interval
1
int
validate
whether to validate when training
TRUE
bool
valid_interval
valid interval
1
int
epochs
epoch
int
topk
K value
5
int
image_shape
image size
[3,224,224]
list, shape: (3,)
use_mix
whether to use mixup
False
['True', 'False']
ls_epsilon
label_smoothing epsilon value
0
float
use_distillation
whether to use SSLD distillation training
False
bool
ARCHITECTURE
name
detail
default value
optional value
name
model name
"ResNet50_vd"
one of 23 architectures
params
model parameters
{}
extra dictionary for the model structure, parameters such as padding_type in EfficientNet can be set here