88 lines
2.7 KiB
Python
88 lines
2.7 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
import cv2
|
|
import shutil
|
|
import os
|
|
import sys
|
|
|
|
import paddle
|
|
import paddle.nn.functional as F
|
|
|
|
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
|
sys.path.append(__dir__)
|
|
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
|
|
|
|
from ppcls.utils.save_load import load_dygraph_pretrain
|
|
from ppcls.modeling import architectures
|
|
import utils
|
|
from utils import get_image_list
|
|
|
|
|
|
def postprocess(outputs, topk=5):
|
|
output = outputs[0]
|
|
prob = np.array(output).flatten()
|
|
index = prob.argsort(axis=0)[-topk:][::-1].astype('int32')
|
|
return zip(index, prob[index])
|
|
|
|
|
|
def save_prelabel_results(class_id, input_filepath, output_idr):
|
|
output_dir = os.path.join(output_idr, str(class_id))
|
|
if not os.path.isdir(output_dir):
|
|
os.makedirs(output_dir)
|
|
shutil.copy(input_filepath, output_dir)
|
|
|
|
|
|
def main():
|
|
args = utils.parse_args()
|
|
# assign the place
|
|
place = paddle.set_device('gpu' if args.use_gpu else 'cpu')
|
|
|
|
net = architectures.__dict__[args.model](class_dim=args.class_num)
|
|
load_dygraph_pretrain(net, args.pretrained_model, args.load_static_weights)
|
|
image_list = get_image_list(args.image_file)
|
|
for idx, filename in enumerate(image_list):
|
|
img = cv2.imread(filename)[:, :, ::-1]
|
|
data = utils.preprocess(img, args)
|
|
data = np.expand_dims(data, axis=0)
|
|
data = paddle.to_tensor(data)
|
|
net.eval()
|
|
outputs = net(data)
|
|
if args.model == "GoogLeNet":
|
|
outputs = outputs[0]
|
|
outputs = F.softmax(outputs)
|
|
outputs = outputs.numpy()
|
|
probs = postprocess(outputs)
|
|
|
|
top1_class_id = 0
|
|
rank = 1
|
|
print("Current image file: {}".format(filename))
|
|
for idx, prob in probs:
|
|
print("\ttop{:d}, class id: {:d}, probability: {:.4f}".format(
|
|
rank, idx, prob))
|
|
if rank == 1:
|
|
top1_class_id = idx
|
|
rank += 1
|
|
|
|
if args.pre_label_image:
|
|
save_prelabel_results(top1_class_id, filename,
|
|
args.pre_label_out_idr)
|
|
|
|
return
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|