PaddleClas/tools/infer/infer.py

88 lines
2.7 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import cv2
import shutil
import os
import sys
import paddle
import paddle.nn.functional as F
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
from ppcls.utils.save_load import load_dygraph_pretrain
from ppcls.modeling import architectures
import utils
from utils import get_image_list
def postprocess(outputs, topk=5):
output = outputs[0]
prob = np.array(output).flatten()
index = prob.argsort(axis=0)[-topk:][::-1].astype('int32')
return zip(index, prob[index])
def save_prelabel_results(class_id, input_filepath, output_idr):
output_dir = os.path.join(output_idr, str(class_id))
if not os.path.isdir(output_dir):
os.makedirs(output_dir)
shutil.copy(input_filepath, output_dir)
def main():
args = utils.parse_args()
# assign the place
place = paddle.set_device('gpu' if args.use_gpu else 'cpu')
net = architectures.__dict__[args.model](class_dim=args.class_num)
load_dygraph_pretrain(net, args.pretrained_model, args.load_static_weights)
image_list = get_image_list(args.image_file)
for idx, filename in enumerate(image_list):
img = cv2.imread(filename)[:, :, ::-1]
data = utils.preprocess(img, args)
data = np.expand_dims(data, axis=0)
data = paddle.to_tensor(data)
net.eval()
outputs = net(data)
if args.model == "GoogLeNet":
outputs = outputs[0]
outputs = F.softmax(outputs)
outputs = outputs.numpy()
probs = postprocess(outputs)
top1_class_id = 0
rank = 1
print("Current image file: {}".format(filename))
for idx, prob in probs:
print("\ttop{:d}, class id: {:d}, probability: {:.4f}".format(
rank, idx, prob))
if rank == 1:
top1_class_id = idx
rank += 1
if args.pre_label_image:
save_prelabel_results(top1_class_id, filename,
args.pre_label_out_idr)
return
if __name__ == "__main__":
main()