PaddleClas/tools/export_model.py
2020-09-22 16:49:12 +08:00

66 lines
2.0 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from ppcls.modeling import architectures
from ppcls.utils.save_load import load_dygraph_pretrain
import paddle
import paddle.nn.functional as F
from paddle.jit import to_static
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("-m", "--model", type=str)
parser.add_argument("-p", "--pretrained_model", type=str)
parser.add_argument("-o", "--output_path", type=str)
parser.add_argument("--class_dim", type=int, default=1000)
# parser.add_argument("--img_size", type=int, default=224)
return parser.parse_args()
class Net(paddle.nn.Layer):
def __init__(self, net, to_static, class_dim):
super(Net, self).__init__()
self.pre_net = net(class_dim=class_dim)
self.to_static = to_static
# 请根据实际需求修改shape
@to_static(input_spec=[
paddle.static.InputSpec(
shape=[None, 3, 224, 224], dtype='float32')
])
def forward(self, inputs):
x = self.pre_net(inputs)
x = F.softmax(x)
return x
def main():
args = parse_args()
paddle.disable_static()
net = architectures.__dict__[args.model]
model = Net(net, to_static, args.class_dim)
para_state_dict = paddle.io.load_program_state(args.pretrained_model)
load_dygraph_pretrain(model, args.pretrained_model, True)
paddle.jit.save(model, args.output_path)
if __name__ == "__main__":
main()