mirror of
https://github.com/PaddlePaddle/PaddleClas.git
synced 2025-06-03 21:55:06 +08:00
175 lines
6.3 KiB
Markdown
175 lines
6.3 KiB
Markdown
# 基于PaddleServing的商品识别服务部署
|
||
|
||
([English](./README.md)|简体中文)
|
||
|
||
本文以商品识别为例,介绍如何使用[PaddleServing](https://github.com/PaddlePaddle/Serving/blob/develop/README_CN.md)工具部署PaddleClas动态图模型的pipeline在线服务。
|
||
|
||
相比较于hubserving部署,PaddleServing具备以下优点:
|
||
- 支持客户端和服务端之间高并发和高效通信
|
||
- 支持 工业级的服务能力 例如模型管理,在线加载,在线A/B测试等
|
||
- 支持 多种编程语言 开发客户端,例如C++, Python和Java
|
||
|
||
更多有关PaddleServing服务化部署框架介绍和使用教程参考[文档](https://github.com/PaddlePaddle/Serving/blob/develop/README_CN.md)。
|
||
|
||
## 目录
|
||
- [环境准备](#环境准备)
|
||
- [模型转换](#模型转换)
|
||
- [Paddle Serving pipeline部署](#部署)
|
||
- [FAQ](#FAQ)
|
||
|
||
<a name="环境准备"></a>
|
||
## 环境准备
|
||
|
||
需要准备PaddleClas的运行环境和PaddleServing的运行环境。
|
||
|
||
- 准备PaddleClas的[运行环境](../../docs/zh_CN/tutorials/install.md), 根据环境下载对应的paddle whl包,推荐安装2.1.0版本
|
||
|
||
- 准备PaddleServing的运行环境,步骤如下
|
||
|
||
1. 安装serving,用于启动服务
|
||
```
|
||
pip3 install paddle-serving-server==0.6.1 # for CPU
|
||
pip3 install paddle-serving-server-gpu==0.6.1 # for GPU
|
||
# 其他GPU环境需要确认环境再选择执行如下命令
|
||
pip3 install paddle-serving-server-gpu==0.6.1.post101 # GPU with CUDA10.1 + TensorRT6
|
||
pip3 install paddle-serving-server-gpu==0.6.1.post11 # GPU with CUDA11 + TensorRT7
|
||
```
|
||
|
||
2. 安装client,用于向服务发送请求
|
||
在[下载链接](https://github.com/PaddlePaddle/Serving/blob/develop/doc/LATEST_PACKAGES.md)中找到对应python版本的client安装包,这里推荐python3.7版本:
|
||
|
||
```
|
||
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.0.0-cp37-none-any.whl
|
||
pip3 install paddle_serving_client-0.0.0-cp37-none-any.whl
|
||
```
|
||
|
||
3. 安装serving-app
|
||
```
|
||
pip3 install paddle-serving-app==0.6.1
|
||
```
|
||
**Note:** 如果要安装最新版本的PaddleServing参考[链接](https://github.com/PaddlePaddle/Serving/blob/develop/doc/LATEST_PACKAGES.md)。
|
||
|
||
<a name="模型转换"></a>
|
||
## 模型转换
|
||
|
||
使用PaddleServing做服务化部署时,需要将保存的inference模型转换为serving易于部署的模型。
|
||
以下内容假定当前工作目录为PaddleClas根目录。
|
||
|
||
首先,下载商品识别的inference模型
|
||
```
|
||
cd deploy
|
||
|
||
# 下载并解压商品识别模型
|
||
wget -P models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/product_ResNet50_vd_aliproduct_v1.0_infer.tar
|
||
cd models
|
||
tar -xf product_ResNet50_vd_aliproduct_v1.0_infer.tar
|
||
```
|
||
|
||
接下来,用安装的paddle_serving_client把下载的inference模型转换成易于server部署的模型格式。
|
||
|
||
```
|
||
# 转换商品识别模型
|
||
python3 -m paddle_serving_client.convert --dirname ./product_ResNet50_vd_aliproduct_v1.0_infer/ \
|
||
--model_filename inference.pdmodel \
|
||
--params_filename inference.pdiparams \
|
||
--serving_server ./product_ResNet50_vd_aliproduct_v1.0_serving/ \
|
||
--serving_client ./product_ResNet50_vd_aliproduct_v1.0_client/
|
||
```
|
||
商品识别推理模型转换完成后,会在当前文件夹多出`product_ResNet50_vd_aliproduct_v1.0_serving` 和`product_ResNet50_vd_aliproduct_v1.0_client`的文件夹,具备如下格式:
|
||
```
|
||
|- product_ResNet50_vd_aliproduct_v1.0_serving/
|
||
|- __model__
|
||
|- __params__
|
||
|- serving_server_conf.prototxt
|
||
|- serving_server_conf.stream.prototxt
|
||
|
||
|- product_ResNet50_vd_aliproduct_v1.0_client
|
||
|- serving_client_conf.prototxt
|
||
|- serving_client_conf.stream.prototxt
|
||
|
||
```
|
||
得到模型文件之后,需要修改serving_server_conf.prototxt中的alias名字: 将`fetch_var`中的`alias_name`改为`features`,
|
||
修改后的serving_server_conf.prototxt内容如下:
|
||
```
|
||
feed_var {
|
||
name: "x"
|
||
alias_name: "x"
|
||
is_lod_tensor: false
|
||
feed_type: 1
|
||
shape: 3
|
||
shape: 224
|
||
shape: 224
|
||
}
|
||
fetch_var {
|
||
name: "save_infer_model/scale_0.tmp_1"
|
||
alias_name: "features"
|
||
is_lod_tensor: true
|
||
fetch_type: 1
|
||
shape: -1
|
||
}
|
||
```
|
||
|
||
接下来,下载并解压已经构建后的商品库index
|
||
```
|
||
cd ../
|
||
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/data/recognition_demo_data_v1.1.tar && tar -xf recognition_demo_data_v1.1.tar
|
||
```
|
||
|
||
|
||
<a name="部署"></a>
|
||
## Paddle Serving pipeline部署
|
||
|
||
**注意:** pipeline部署方式不支持windows平台
|
||
|
||
1. 下载PaddleClas代码,若已下载可跳过此步骤
|
||
```
|
||
git clone https://github.com/PaddlePaddle/PaddleClas
|
||
|
||
# 进入到工作目录
|
||
cd PaddleClas/deploy/paddleserving/recognition
|
||
```
|
||
paddleserving目录包含启动pipeline服务和发送预测请求的代码,包括:
|
||
```
|
||
__init__.py
|
||
config.yml # 启动服务的配置文件
|
||
pipeline_http_client.py # http方式发送pipeline预测请求的脚本
|
||
pipeline_rpc_client.py # rpc方式发送pipeline预测请求的脚本
|
||
recognition_web_service.py # 启动pipeline服务端的脚本
|
||
```
|
||
|
||
2. 启动服务可运行如下命令:
|
||
```
|
||
# 启动服务,运行日志保存在log.txt
|
||
python3 recognition_web_service.py &>log.txt &
|
||
```
|
||
成功启动服务后,log.txt中会打印类似如下日志
|
||

|
||
|
||
3. 发送服务请求:
|
||
```
|
||
python3 pipeline_http_client.py
|
||
```
|
||
成功运行后,模型预测的结果会打印在cmd窗口中,结果示例为:
|
||

|
||
|
||
调整 config.yml 中的并发个数可以获得最大的QPS
|
||
```
|
||
op:
|
||
#并发数,is_thread_op=True时,为线程并发;否则为进程并发
|
||
concurrency: 8
|
||
...
|
||
```
|
||
有需要的话可以同时发送多个服务请求
|
||
|
||
预测性能数据会被自动写入 `PipelineServingLogs/pipeline.tracer` 文件中。
|
||
|
||
<a name="FAQ"></a>
|
||
## FAQ
|
||
**Q1**: 发送请求后没有结果返回或者提示输出解码报错
|
||
|
||
**A1**: 启动服务和发送请求时不要设置代理,可以在启动服务前和发送请求前关闭代理,关闭代理的命令是:
|
||
```
|
||
unset https_proxy
|
||
unset http_proxy
|
||
```
|