PaddleClas/ppcls/engine/evaluation/classification.py

190 lines
7.3 KiB
Python

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
import platform
import paddle
from ppcls.utils.misc import AverageMeter
from ppcls.utils import logger
def classification_eval(engine, epoch_id=0):
if hasattr(engine.eval_metric_func, "reset"):
engine.eval_metric_func.reset()
output_info = dict()
time_info = {
"batch_cost": AverageMeter(
"batch_cost", '.5f', postfix=" s,"),
"reader_cost": AverageMeter(
"reader_cost", ".5f", postfix=" s,"),
}
print_batch_step = engine.config["Global"]["print_batch_step"]
tic = time.time()
accum_samples = 0
total_samples = len(
engine.eval_dataloader.
dataset) if not engine.use_dali else engine.eval_dataloader.size
max_iter = len(engine.eval_dataloader) - 1 if platform.system(
) == "Windows" else len(engine.eval_dataloader)
for iter_id, batch in enumerate(engine.eval_dataloader):
if iter_id >= max_iter:
break
if iter_id == 5:
for key in time_info:
time_info[key].reset()
if engine.use_dali:
batch = [
paddle.to_tensor(batch[0]['data']),
paddle.to_tensor(batch[0]['label'])
]
time_info["reader_cost"].update(time.time() - tic)
batch_size = batch[0].shape[0]
batch[0] = paddle.to_tensor(batch[0])
if not engine.config["Global"].get("use_multilabel", False):
batch[1] = batch[1].reshape([-1, 1]).astype("int64")
# image input
if engine.amp and engine.amp_eval:
with paddle.amp.auto_cast(
custom_black_list={
"flatten_contiguous_range", "greater_than"
},
level=engine.amp_level):
out = engine.model(batch[0])
else:
out = engine.model(batch[0])
# just for DistributedBatchSampler issue: repeat sampling
current_samples = batch_size * paddle.distributed.get_world_size()
accum_samples += current_samples
if isinstance(out, dict) and "Student" in out:
out = out["Student"]
if isinstance(out, dict) and "logits" in out:
out = out["logits"]
# gather Tensor when distributed
if paddle.distributed.get_world_size() > 1:
label_list = []
label = batch[1].cuda() if engine.config["Global"][
"device"] == "gpu" else batch[1]
paddle.distributed.all_gather(label_list, label)
labels = paddle.concat(label_list, 0)
if isinstance(out, list):
preds = []
for x in out:
pred_list = []
paddle.distributed.all_gather(pred_list, x)
pred_x = paddle.concat(pred_list, 0)
preds.append(pred_x)
else:
pred_list = []
paddle.distributed.all_gather(pred_list, out)
preds = paddle.concat(pred_list, 0)
if accum_samples > total_samples and not engine.use_dali:
if isinstance(preds, list):
preds = [
pred[:total_samples + current_samples - accum_samples]
for pred in preds
]
else:
preds = preds[:total_samples + current_samples -
accum_samples]
labels = labels[:total_samples + current_samples -
accum_samples]
current_samples = total_samples + current_samples - accum_samples
else:
labels = batch[1]
preds = out
# calc loss
if engine.eval_loss_func is not None:
if engine.amp and engine.amp_eval:
with paddle.amp.auto_cast(
custom_black_list={
"flatten_contiguous_range", "greater_than"
},
level=engine.amp_level):
loss_dict = engine.eval_loss_func(preds, labels)
else:
loss_dict = engine.eval_loss_func(preds, labels)
for key in loss_dict:
if key not in output_info:
output_info[key] = AverageMeter(key, '7.5f')
output_info[key].update(loss_dict[key].numpy()[0],
current_samples)
# calc metric
if engine.eval_metric_func is not None:
engine.eval_metric_func(preds, labels)
time_info["batch_cost"].update(time.time() - tic)
if iter_id % print_batch_step == 0:
time_msg = "s, ".join([
"{}: {:.5f}".format(key, time_info[key].avg)
for key in time_info
])
ips_msg = "ips: {:.5f} images/sec".format(
batch_size / time_info["batch_cost"].avg)
if "ATTRMetric" in engine.config["Metric"]["Eval"][0]:
metric_msg = ""
else:
metric_msg = ", ".join([
"{}: {:.5f}".format(key, output_info[key].val)
for key in output_info
])
metric_msg += ", {}".format(engine.eval_metric_func.avg_info)
logger.info("[Eval][Epoch {}][Iter: {}/{}]{}, {}, {}".format(
epoch_id, iter_id,
len(engine.eval_dataloader), metric_msg, time_msg, ips_msg))
tic = time.time()
if engine.use_dali:
engine.eval_dataloader.reset()
if "ATTRMetric" in engine.config["Metric"]["Eval"][0]:
metric_msg = ", ".join([
"evalres: ma: {:.5f} label_f1: {:.5f} label_pos_recall: {:.5f} label_neg_recall: {:.5f} instance_f1: {:.5f} instance_acc: {:.5f} instance_prec: {:.5f} instance_recall: {:.5f}".
format(*engine.eval_metric_func.attr_res())
])
logger.info("[Eval][Epoch {}][Avg]{}".format(epoch_id, metric_msg))
# do not try to save best eval.model
if engine.eval_metric_func is None:
return -1
# return 1st metric in the dict
return engine.eval_metric_func.attr_res()[0]
else:
metric_msg = ", ".join([
"{}: {:.5f}".format(key, output_info[key].avg)
for key in output_info
])
metric_msg += ", {}".format(engine.eval_metric_func.avg_info)
logger.info("[Eval][Epoch {}][Avg]{}".format(epoch_id, metric_msg))
# do not try to save best eval.model
if engine.eval_metric_func is None:
return -1
# return 1st metric in the dict
return engine.eval_metric_func.avg