PaddleClas/tools/infer/predict.py

161 lines
5.1 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import utils
import numpy as np
import logging
import time
from paddle.fluid.core import AnalysisConfig
from paddle.fluid.core import create_paddle_predictor
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def parse_args():
def str2bool(v):
return v.lower() in ("true", "t", "1")
parser = argparse.ArgumentParser()
parser.add_argument("-i", "--image_file", type=str)
parser.add_argument("-m", "--model_file", type=str)
parser.add_argument("-p", "--params_file", type=str)
parser.add_argument("-b", "--batch_size", type=int, default=1)
parser.add_argument("--use_fp16", type=str2bool, default=False)
parser.add_argument("--use_gpu", type=str2bool, default=True)
parser.add_argument("--ir_optim", type=str2bool, default=True)
parser.add_argument("--use_tensorrt", type=str2bool, default=False)
parser.add_argument("--gpu_mem", type=int, default=8000)
parser.add_argument("--enable_benchmark", type=str2bool, default=False)
parser.add_argument("--model_name", type=str)
return parser.parse_args()
def create_predictor(args):
config = AnalysisConfig(args.model_file, args.params_file)
if args.use_gpu:
config.enable_use_gpu(args.gpu_mem, 0)
else:
config.disable_gpu()
config.disable_glog_info()
config.switch_ir_optim(args.ir_optim) # default true
if args.use_tensorrt:
config.enable_tensorrt_engine(
precision_mode=AnalysisConfig.Precision.Half
if args.use_fp16 else AnalysisConfig.Precision.Float32,
max_batch_size=args.batch_size)
config.enable_memory_optim()
# use zero copy
config.switch_use_feed_fetch_ops(False)
predictor = create_paddle_predictor(config)
return predictor
def create_operators():
size = 224
img_mean = [0.485, 0.456, 0.406]
img_std = [0.229, 0.224, 0.225]
img_scale = 1.0 / 255.0
decode_op = utils.DecodeImage()
resize_op = utils.ResizeImage(resize_short=256)
crop_op = utils.CropImage(size=(size, size))
normalize_op = utils.NormalizeImage(
scale=img_scale, mean=img_mean, std=img_std)
totensor_op = utils.ToTensor()
return [decode_op, resize_op, crop_op, normalize_op, totensor_op]
def preprocess(fname, ops):
data = open(fname, 'rb').read()
for op in ops:
data = op(data)
return data
def main():
args = parse_args()
if not args.enable_benchmark:
assert args.batch_size == 1
assert args.use_fp16 is False
else:
assert args.use_gpu is True
assert args.model_name is not None
assert args.use_tensorrt is True
# HALF precission predict only work when using tensorrt
if args.use_fp16 is True:
assert args.use_tensorrt is True
operators = create_operators()
predictor = create_predictor(args)
input_names = predictor.get_input_names()
input_tensor = predictor.get_input_tensor(input_names[0])
output_names = predictor.get_output_names()
output_tensor = predictor.get_output_tensor(output_names[0])
test_num = 500
test_time = 0.0
if not args.enable_benchmark:
inputs = preprocess(args.image_file, operators)
inputs = np.expand_dims(
inputs, axis=0).repeat(
args.batch_size, axis=0).copy()
input_tensor.copy_from_cpu(inputs)
predictor.zero_copy_run()
output = output_tensor.copy_to_cpu()
output = output.flatten()
cls = np.argmax(output)
score = output[cls]
logger.info("class: {0}".format(cls))
logger.info("score: {0}".format(score))
else:
for i in range(0, test_num + 10):
inputs = np.random.rand(args.batch_size, 3, 224,
224).astype(np.float32)
start_time = time.time()
input_tensor.copy_from_cpu(inputs)
predictor.zero_copy_run()
output = output_tensor.copy_to_cpu()
output = output.flatten()
if i >= 10:
test_time += time.time() - start_time
cls = np.argmax(output)
score = output[cls]
logger.info("class: {0}".format(cls))
logger.info("score: {0}".format(score))
fp_message = "FP16" if args.use_fp16 else "FP32"
logger.info("{0}\t{1}\tbatch size: {2}\ttime(ms): {3}".format(
args.model_name, fp_message, args.batch_size, 1000 * test_time /
test_num))
if __name__ == "__main__":
main()