PaddleClas/ppcls/arch/backbone/base/dbb/dbb_block.py

366 lines
13 KiB
Python

# copyright (c) 2023 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# reference: https://arxiv.org/abs/2103.13425, https://github.com/DingXiaoH/DiverseBranchBlock
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import numpy as np
from .dbb_transforms import *
def conv_bn(in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
padding_mode='zeros'):
conv_layer = nn.Conv2D(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias_attr=False,
padding_mode=padding_mode)
bn_layer = nn.BatchNorm2D(num_features=out_channels)
se = nn.Sequential()
se.add_sublayer('conv', conv_layer)
se.add_sublayer('bn', bn_layer)
return se
class IdentityBasedConv1x1(nn.Conv2D):
def __init__(self, channels, groups=1):
super(IdentityBasedConv1x1, self).__init__(
in_channels=channels,
out_channels=channels,
kernel_size=1,
stride=1,
padding=0,
groups=groups,
bias_attr=False)
assert channels % groups == 0
input_dim = channels // groups
id_value = np.zeros((channels, input_dim, 1, 1))
for i in range(channels):
id_value[i, i % input_dim, 0, 0] = 1
self.id_tensor = paddle.to_tensor(id_value)
self.weight.set_value(paddle.zeros_like(self.weight))
def forward(self, input):
kernel = self.weight + self.id_tensor
result = F.conv2d(
input,
kernel,
None,
stride=1,
padding=0,
dilation=self._dilation,
groups=self._groups)
return result
def get_actual_kernel(self):
return self.weight + self.id_tensor
class BNAndPad(nn.Layer):
def __init__(self,
pad_pixels,
num_features,
epsilon=1e-5,
momentum=0.1,
last_conv_bias=None,
bn=nn.BatchNorm2D):
super().__init__()
self.bn = bn(num_features, momentum=momentum, epsilon=epsilon)
self.pad_pixels = pad_pixels
self.last_conv_bias = last_conv_bias
def forward(self, input):
output = self.bn(input)
if self.pad_pixels > 0:
bias = -self.bn._mean
if self.last_conv_bias is not None:
bias += self.last_conv_bias
pad_values = self.bn.bias + self.bn.weight * (
bias / paddle.sqrt(self.bn._variance + self.bn._epsilon))
''' pad '''
# TODO: n,h,w,c format is not supported yet
n, c, h, w = output.shape
values = pad_values.reshape([1, -1, 1, 1])
w_values = values.expand([n, -1, self.pad_pixels, w])
x = paddle.concat([w_values, output, w_values], axis=2)
h = h + self.pad_pixels * 2
h_values = values.expand([n, -1, h, self.pad_pixels])
x = paddle.concat([h_values, x, h_values], axis=3)
output = x
return output
@property
def weight(self):
return self.bn.weight
@property
def bias(self):
return self.bn.bias
@property
def _mean(self):
return self.bn._mean
@property
def _variance(self):
return self.bn._variance
@property
def _epsilon(self):
return self.bn._epsilon
class DiverseBranchBlock(nn.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
is_repped=False,
single_init=False,
**kwargs):
super().__init__()
padding = (filter_size - 1) // 2
dilation = 1
in_channels = num_channels
out_channels = num_filters
kernel_size = filter_size
internal_channels_1x1_3x3 = None
nonlinear = act
self.is_repped = is_repped
if nonlinear is None:
self.nonlinear = nn.Identity()
else:
self.nonlinear = nn.ReLU()
self.kernel_size = kernel_size
self.out_channels = out_channels
self.groups = groups
assert padding == kernel_size // 2
if is_repped:
self.dbb_reparam = nn.Conv2D(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias_attr=True)
else:
self.dbb_origin = conv_bn(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups)
self.dbb_avg = nn.Sequential()
if groups < out_channels:
self.dbb_avg.add_sublayer(
'conv',
nn.Conv2D(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
stride=1,
padding=0,
groups=groups,
bias_attr=False))
self.dbb_avg.add_sublayer(
'bn',
BNAndPad(
pad_pixels=padding, num_features=out_channels))
self.dbb_avg.add_sublayer(
'avg',
nn.AvgPool2D(
kernel_size=kernel_size, stride=stride, padding=0))
self.dbb_1x1 = conv_bn(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
stride=stride,
padding=0,
groups=groups)
else:
self.dbb_avg.add_sublayer(
'avg',
nn.AvgPool2D(
kernel_size=kernel_size,
stride=stride,
padding=padding))
self.dbb_avg.add_sublayer('avgbn', nn.BatchNorm2D(out_channels))
if internal_channels_1x1_3x3 is None:
internal_channels_1x1_3x3 = in_channels if groups < out_channels else 2 * in_channels # For mobilenet, it is better to have 2X internal channels
self.dbb_1x1_kxk = nn.Sequential()
if internal_channels_1x1_3x3 == in_channels:
self.dbb_1x1_kxk.add_sublayer(
'idconv1',
IdentityBasedConv1x1(
channels=in_channels, groups=groups))
else:
self.dbb_1x1_kxk.add_sublayer(
'conv1',
nn.Conv2D(
in_channels=in_channels,
out_channels=internal_channels_1x1_3x3,
kernel_size=1,
stride=1,
padding=0,
groups=groups,
bias_attr=False))
self.dbb_1x1_kxk.add_sublayer(
'bn1',
BNAndPad(
pad_pixels=padding,
num_features=internal_channels_1x1_3x3))
self.dbb_1x1_kxk.add_sublayer(
'conv2',
nn.Conv2D(
in_channels=internal_channels_1x1_3x3,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=0,
groups=groups,
bias_attr=False))
self.dbb_1x1_kxk.add_sublayer('bn2', nn.BatchNorm2D(out_channels))
# The experiments reported in the paper used the default initialization of bn.weight (all as 1). But changing the initialization may be useful in some cases.
if single_init:
# Initialize the bn.weight of dbb_origin as 1 and others as 0. This is not the default setting.
self.single_init()
def forward(self, inputs):
if self.is_repped:
return self.nonlinear(self.dbb_reparam(inputs))
out = self.dbb_origin(inputs)
if hasattr(self, 'dbb_1x1'):
out += self.dbb_1x1(inputs)
out += self.dbb_avg(inputs)
out += self.dbb_1x1_kxk(inputs)
return self.nonlinear(out)
def init_gamma(self, gamma_value):
if hasattr(self, "dbb_origin"):
paddle.nn.init.constant_(self.dbb_origin.bn.weight, gamma_value)
if hasattr(self, "dbb_1x1"):
paddle.nn.init.constant_(self.dbb_1x1.bn.weight, gamma_value)
if hasattr(self, "dbb_avg"):
paddle.nn.init.constant_(self.dbb_avg.avgbn.weight, gamma_value)
if hasattr(self, "dbb_1x1_kxk"):
paddle.nn.init.constant_(self.dbb_1x1_kxk.bn2.weight, gamma_value)
def single_init(self):
self.init_gamma(0.0)
if hasattr(self, "dbb_origin"):
paddle.nn.init.constant_(self.dbb_origin.bn.weight, 1.0)
def get_equivalent_kernel_bias(self):
k_origin, b_origin = transI_fusebn(self.dbb_origin.conv.weight,
self.dbb_origin.bn)
if hasattr(self, 'dbb_1x1'):
k_1x1, b_1x1 = transI_fusebn(self.dbb_1x1.conv.weight,
self.dbb_1x1.bn)
k_1x1 = transVI_multiscale(k_1x1, self.kernel_size)
else:
k_1x1, b_1x1 = 0, 0
if hasattr(self.dbb_1x1_kxk, 'idconv1'):
k_1x1_kxk_first = self.dbb_1x1_kxk.idconv1.get_actual_kernel()
else:
k_1x1_kxk_first = self.dbb_1x1_kxk.conv1.weight
k_1x1_kxk_first, b_1x1_kxk_first = transI_fusebn(k_1x1_kxk_first,
self.dbb_1x1_kxk.bn1)
k_1x1_kxk_second, b_1x1_kxk_second = transI_fusebn(
self.dbb_1x1_kxk.conv2.weight, self.dbb_1x1_kxk.bn2)
k_1x1_kxk_merged, b_1x1_kxk_merged = transIII_1x1_kxk(
k_1x1_kxk_first,
b_1x1_kxk_first,
k_1x1_kxk_second,
b_1x1_kxk_second,
groups=self.groups)
k_avg = transV_avg(self.out_channels, self.kernel_size, self.groups)
k_1x1_avg_second, b_1x1_avg_second = transI_fusebn(k_avg,
self.dbb_avg.avgbn)
if hasattr(self.dbb_avg, 'conv'):
k_1x1_avg_first, b_1x1_avg_first = transI_fusebn(
self.dbb_avg.conv.weight, self.dbb_avg.bn)
k_1x1_avg_merged, b_1x1_avg_merged = transIII_1x1_kxk(
k_1x1_avg_first,
b_1x1_avg_first,
k_1x1_avg_second,
b_1x1_avg_second,
groups=self.groups)
else:
k_1x1_avg_merged, b_1x1_avg_merged = k_1x1_avg_second, b_1x1_avg_second
return transII_addbranch(
(k_origin, k_1x1, k_1x1_kxk_merged, k_1x1_avg_merged),
(b_origin, b_1x1, b_1x1_kxk_merged, b_1x1_avg_merged))
def re_parameterize(self):
if self.is_repped:
return
kernel, bias = self.get_equivalent_kernel_bias()
self.dbb_reparam = nn.Conv2D(
in_channels=self.dbb_origin.conv._in_channels,
out_channels=self.dbb_origin.conv._out_channels,
kernel_size=self.dbb_origin.conv._kernel_size,
stride=self.dbb_origin.conv._stride,
padding=self.dbb_origin.conv._padding,
dilation=self.dbb_origin.conv._dilation,
groups=self.dbb_origin.conv._groups,
bias_attr=True)
self.dbb_reparam.weight.set_value(kernel)
self.dbb_reparam.bias.set_value(bias)
self.__delattr__('dbb_origin')
self.__delattr__('dbb_avg')
if hasattr(self, 'dbb_1x1'):
self.__delattr__('dbb_1x1')
self.__delattr__('dbb_1x1_kxk')
self.is_repped = True