PaddleClas/docs/zh_CN/models/HRNet.md

2.4 KiB
Raw Blame History

HRNet系列

概述

HRNet是2019年由微软亚洲研究院提出的一种全新的神经网络不同于以往的卷积神经网络该网络在网络深层仍然可以保持高分辨率因此预测的关键点热图更准确在空间上也更精确。此外该网络在对分辨率敏感的其他视觉任务中如检测、分割等表现尤为优异。

该系列模型的FLOPS、参数量以及FP32预测耗时如下图所示。

目前PaddleClas开源的这类模型的预训练模型一共有7个其指标如图所示其中HRNet_W48_C指标精度异常的原因可能是因为网络训练的正常波动。

精度、FLOPS和参数量

Models Top1 Top5 Reference
top1
Reference
top5
FLOPS
(G)
Parameters
(M)
HRNet_W18_C 0.769 0.934 0.768 0.934 4.140 21.290
HRNet_W30_C 0.780 0.940 0.782 0.942 16.230 37.710
HRNet_W32_C 0.783 0.942 0.785 0.942 17.860 41.230
HRNet_W40_C 0.788 0.945 0.789 0.945 25.410 57.550
HRNet_W44_C 0.790 0.945 0.789 0.944 29.790 67.060
HRNet_W48_C 0.790 0.944 0.793 0.945 34.580 77.470
HRNet_W64_C 0.793 0.946 0.795 0.946 57.830 128.060

FP32预测速度

Models Crop Size Resize Short Size Batch Size=1
(ms)
HRNet_W18_C 224 256 7.368
HRNet_W30_C 224 256 9.402
HRNet_W32_C 224 256 9.467
HRNet_W40_C 224 256 10.739
HRNet_W44_C 224 256 11.497
HRNet_W48_C 224 256 12.165
HRNet_W64_C 224 256 15.003