PaddleClas/ppcls/engine/train/train_fixmatch.py

166 lines
6.6 KiB
Python

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function
import time
import paddle
from ppcls.engine.train.utils import update_loss, update_metric, log_info
from ppcls.utils import profiler
from paddle.nn import functional as F
import numpy as np
def train_epoch_fixmatch(engine, epoch_id, print_batch_step):
tic = time.time()
if not hasattr(engine, "train_dataloader_iter"):
engine.train_dataloader_iter = iter(engine.train_dataloader)
engine.unlabel_train_dataloader_iter = iter(
engine.unlabel_train_dataloader)
temperture = engine.config["SSL"].get("temperture", 1)
threshold = engine.config["SSL"].get("threshold", 0.95)
assert engine.iter_per_epoch is not None, "Global.iter_per_epoch need to be set."
threshold = paddle.to_tensor(threshold)
for iter_id in range(engine.iter_per_epoch):
if iter_id >= engine.iter_per_epoch:
break
if iter_id == 5:
for key in engine.time_info:
engine.time_info[key].reset()
try:
label_data_batch = engine.train_dataloader_iter.next()
except Exception:
engine.train_dataloader_iter = iter(engine.train_dataloader)
label_data_batch = engine.train_dataloader_iter.next()
try:
unlabel_data_batch = engine.unlabel_train_dataloader_iter.next()
except Exception:
engine.unlabel_train_dataloader_iter = iter(
engine.unlabel_train_dataloader)
unlabel_data_batch = engine.unlabel_train_dataloader_iter.next()
assert len(unlabel_data_batch) == 3
assert unlabel_data_batch[0].shape == unlabel_data_batch[1].shape
engine.time_info["reader_cost"].update(time.time() - tic)
batch_size = label_data_batch[0].shape[0] + unlabel_data_batch[0].shape[0] \
+ unlabel_data_batch[1].shape[0]
engine.global_step += 1
# make inputs
inputs_x, targets_x = label_data_batch
inputs_u_w, inputs_u_s, targets_u = unlabel_data_batch
batch_size_label = inputs_x.shape[0]
inputs = paddle.concat([inputs_x, inputs_u_w, inputs_u_s], axis=0)
# image input
if engine.amp:
amp_level = engine.config['AMP'].get("level", "O1").upper()
with paddle.amp.auto_cast(
custom_black_list={
"flatten_contiguous_range", "greater_than"
},
level=amp_level):
loss_dict, logits_label = get_loss(
engine, inputs, batch_size_label, temperture, threshold,
targets_x)
else:
loss_dict, logits_label = get_loss(engine, inputs,
batch_size_label, temperture,
threshold, targets_x)
# loss
loss = loss_dict["loss"]
# backward & step opt
if engine.amp:
scaled = engine.scaler.scale(loss)
scaled.backward()
for i in range(len(engine.optimizer)):
engine.scaler.minimize(engine.optimizer[i], scaled)
else:
loss.backward()
for i in range(len(engine.optimizer)):
engine.optimizer[i].step()
# step lr(by step)
for i in range(len(engine.lr_sch)):
if not getattr(engine.lr_sch[i], "by_epoch", False):
engine.lr_sch[i].step()
# clear grad
for i in range(len(engine.optimizer)):
engine.optimizer[i].clear_grad()
# update ema
if engine.ema:
engine.model_ema.update(engine.model)
# below code just for logging
# update metric_for_logger
update_metric(engine, logits_label, label_data_batch, batch_size)
# update_loss_for_logger
update_loss(engine, loss_dict, batch_size)
engine.time_info["batch_cost"].update(time.time() - tic)
if iter_id % print_batch_step == 0:
log_info(engine, batch_size, epoch_id, iter_id)
tic = time.time()
# step lr(by epoch)
for i in range(len(engine.lr_sch)):
if getattr(engine.lr_sch[i], "by_epoch", False):
engine.lr_sch[i].step()
def get_loss(engine, inputs, batch_size_label, temperture, threshold,
targets_x):
# For pytroch version, inputs need to use interleave and de_interleave
# to reshape and transpose inputs and logits, but it dosen't affect the
# result. So this paddle version dose not use the two transpose func.
# inputs = interleave(inputs, inputs.shape[0] // batch_size_label)
logits = engine.model(inputs)
# logits = de_interleave(logits, inputs.shape[0] // batch_size_label)
logits_x = logits[:batch_size_label]
logits_u_w, logits_u_s = logits[batch_size_label:].chunk(2)
loss_dict_label = engine.train_loss_func(logits_x, targets_x)
probs_u_w = F.softmax(logits_u_w.detach() / temperture, axis=-1)
p_targets_u, mask = get_psuedo_label_and_mask(probs_u_w, threshold)
unlabel_celoss = engine.unlabel_train_loss_func(logits_u_s,
p_targets_u)["CELoss"]
unlabel_celoss = (unlabel_celoss * mask).mean()
loss_dict = dict()
for k, v in loss_dict_label.items():
if k != "loss":
loss_dict[k + "_label"] = v
loss_dict["CELoss_unlabel"] = unlabel_celoss
loss_dict["loss"] = loss_dict_label['loss'] + unlabel_celoss
return loss_dict, logits_x
def get_psuedo_label_and_mask(probs_u_w, threshold):
max_probs = paddle.max(probs_u_w, axis=-1)
p_targets_u = paddle.argmax(probs_u_w, axis=-1)
mask = paddle.greater_equal(max_probs, threshold).astype('float')
return p_targets_u, mask
def interleave(x, size):
s = list(x.shape)
return x.reshape([-1, size] + s[1:]).transpose(
[1, 0, 2, 3, 4]).reshape([-1] + s[1:])
def de_interleave(x, size):
s = list(x.shape)
return x.reshape([size, -1] + s[1:]).transpose(
[1, 0, 2]).reshape([-1] + s[1:])