PaddleClas/ppcls/arch/backbone/model_zoo/foundation_vit.py

904 lines
30 KiB
Python

# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Code was based on https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
# reference: https://arxiv.org/abs/2010.11929
from collections.abc import Callable, Iterable
import numpy as np
import paddle
import paddle.nn as nn
import sys
from paddle.nn.initializer import TruncatedNormal, Constant, Normal
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
MODEL_URLS = {
"CLIP_vit_base_patch32_224":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/CLIP_vit_base_patch32_224.pdparams",
"CLIP_vit_base_patch16_224":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/CLIP_vit_base_patch16_224.pdparams",
"CLIP_vit_large_patch14_336":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/CLIP_vit_large_patch14_336.pdparams",
"CLIP_vit_large_patch14_224":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/CLIP_vit_large_patch14_224.pdparams",
"BEiTv2_vit_base_patch16_224":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/BEiTv2_vit_base_patch16_224.pdparams",
"BEiTv2_vit_large_patch16_224":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/BEiTv2_vit_large_patch16_224.pdparams",
"CAE_vit_base_patch16_224":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/CAE_vit_base_patch16_224.pdparams",
'EVA_vit_giant_patch14':
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/EVA_vit_giant_patch14.pdparams",
"MOCOV3_vit_small":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/MOCOV3_vit_small.pdparams",
"MOCOV3_vit_base":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/MOCOV3_vit_base.pdparams",
"MAE_vit_huge_patch14":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/MAE_vit_huge_patch14.pdparams",
"MAE_vit_large_patch16":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/MAE_vit_large_patch16.pdparams",
"MAE_vit_base_patch16":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/MAE_vit_base_patch16.pdparams",
}
__all__ = list(MODEL_URLS.keys())
_model_size = None
_model_diff = None
_CLIP_diff = {
'add_layer_norm_before_encoder': [
'vit_base_patch32_224', 'vit_base_patch16_224',
'vit_large_patch14_336', 'vit_large_patch14_224'
],
'add_relative_position_bias_in_msa': [],
'add_shared_rel_pos_bias': [],
'add_mul_gamma_to_msa_mlp': [],
'remove_cls_token': [],
'remove_abs_pos_emb': [],
'replace_mlp_GELU': [
'vit_base_patch32_224', 'vit_base_patch16_224',
'vit_large_patch14_336', 'vit_large_patch14_224'
],
'head': {
'fc_norm': [],
'return_all_tokens': [],
'return_patch_tokens': [],
}
}
_MOCOV3_diff = {
'add_layer_norm_before_encoder': [],
'add_relative_position_bias_in_msa': [],
'add_shared_rel_pos_bias': [],
'add_mul_gamma_to_msa_mlp': [],
'remove_cls_token': [],
'remove_abs_pos_emb': [],
'replace_mlp_GELU': [],
'head': {
'fc_norm': [],
'return_all_tokens': [],
'return_patch_tokens': [],
}
}
_CoCa_diff = {
'add_layer_norm_before_encoder': [],
'add_relative_position_bias_in_msa': [],
'add_shared_rel_pos_bias': [],
'add_mul_gamma_to_msa_mlp': [],
'remove_cls_token': [],
'remove_abs_pos_emb': [],
'replace_mlp_GELU': [],
'head': {
'fc_norm': [],
'return_all_tokens': [],
'return_patch_tokens': [],
}
}
_BEiTv2_diff = {
'add_layer_norm_before_encoder': [],
'add_relative_position_bias_in_msa':
['vit_base_patch16_224', 'vit_large_patch16_224'],
'add_shared_rel_pos_bias': [],
'add_mul_gamma_to_msa_mlp':
['vit_base_patch16_224', 'vit_large_patch16_224'],
'remove_cls_token': [],
'remove_abs_pos_emb': ['vit_base_patch16_224', 'vit_large_patch16_224'],
'replace_mlp_GELU': [],
'head': {
'fc_norm': [],
'return_all_tokens': [],
'return_patch_tokens': [],
}
}
_CAE_diff = {
'add_layer_norm_before_encoder': [],
'add_relative_position_bias_in_msa': ['vit_base_patch16_224'],
'add_shared_rel_pos_bias': [],
'add_mul_gamma_to_msa_mlp': ['vit_base_patch16_224'],
'remove_cls_token': [],
'remove_abs_pos_emb': [],
'replace_mlp_GELU': [],
'head': {
'fc_norm': [], # 3 x 197 x 786
'return_all_tokens': [], # 3 x 197 x 1000
'return_patch_tokens': [], # 3 x 196 x 1000
}
}
_EVA_diff = {
'add_layer_norm_before_encoder': [],
'add_relative_position_bias_in_msa': [],
'add_shared_rel_pos_bias': [],
'add_mul_gamma_to_msa_mlp': [],
'remove_cls_token': [],
'remove_abs_pos_emb': [],
'replace_mlp_GELU': [],
'head': {
'fc_norm': ['vit_huge_patch14'],
'return_all_tokens': [],
'return_patch_tokens': [],
}
}
_MAE_diff = {
'add_layer_norm_before_encoder': [],
'add_relative_position_bias_in_msa': [],
'add_shared_rel_pos_bias': [],
'add_mul_gamma_to_msa_mlp': [],
'remove_cls_token': [],
'remove_abs_pos_emb': [],
'replace_mlp_GELU': [],
'head': {
'fc_norm': ['vit_huge_patch14'],
'return_all_tokens': [],
'return_patch_tokens': [],
}
}
trunc_normal_ = TruncatedNormal(std=.02)
normal_ = Normal
zeros_ = Constant(value=0.)
ones_ = Constant(value=1.)
def to_2tuple(x):
return tuple([x] * 2)
def drop_path(x, drop_prob=0., training=False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ...
"""
if drop_prob == 0. or not training:
return x
keep_prob = paddle.to_tensor(1 - drop_prob, dtype=x.dtype)
shape = (paddle.shape(x)[0], ) + (1, ) * (x.ndim - 1)
random_tensor = keep_prob + paddle.rand(shape).astype(x.dtype)
random_tensor = paddle.floor(random_tensor) # binarize
output = x.divide(keep_prob) * random_tensor
return output
class DropPath(nn.Layer):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
class Identity(nn.Layer):
def __init__(self):
super(Identity, self).__init__()
def forward(self, input):
return input
class QuickGELU(nn.Layer):
def forward(self, x):
return x * nn.functional.sigmoid(1.702 * x)
class Mlp(nn.Layer):
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer() if _model_size not in _model_diff[
'replace_mlp_GELU'] else QuickGELU()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Layer):
def __init__(self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.,
proj_drop=0.,
model_name=None,
window_size=None):
super().__init__()
self._model_name = model_name
if _model_size in _model_diff['add_relative_position_bias_in_msa']:
assert isinstance(
window_size, Iterable
), f'window_size must be iterable, should not be {type(window_size)}'
self.window_size = window_size
self._register_relative_position_index(
window_size=window_size,
num_heads=num_heads, )
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias_attr=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def _register_relative_position_index(
self,
window_size,
num_heads, ):
self.num_relative_distance = (2 * window_size[0] - 1) * (
2 * window_size[1] - 1) + 3
self.relative_position_bias_table = self.create_parameter(
[self.num_relative_distance, num_heads],
default_initializer=zeros_) # 2*Wh-1 * 2*Ww-1, nH
coords_h = paddle.arange(window_size[0])
coords_w = paddle.arange(window_size[1])
coords = paddle.stack(paddle.meshgrid(
[coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = paddle.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :,
None] - coords_flatten[:,
None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.transpose(
[1, 2, 0]) # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = \
paddle.zeros((window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype)
relative_position_index[1:, 1:] = relative_coords.sum(
-1) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = self.num_relative_distance - 3
relative_position_index[0:, 0] = self.num_relative_distance - 2
relative_position_index[0, 0] = self.num_relative_distance - 1
self.register_buffer("relative_position_index",
relative_position_index)
def forward(self, x, rel_pos_bias=None):
# B= paddle.shape(x)[0]
N, C = x.shape[1:]
qkv = self.qkv(x).reshape((-1, N, 3, self.num_heads, C //
self.num_heads)).transpose((2, 0, 3, 1, 4))
q, k, v = qkv[0], qkv[1], qkv[2]
attn = (q.matmul(k.transpose((0, 1, 3, 2)))) * self.scale
if hasattr(self, 'relative_position_bias_table'):
relative_position_bias = \
self.relative_position_bias_table[self.relative_position_index.reshape([-1])].reshape([
self.window_size[0] * self.window_size[1] + 1,
self.window_size[0] * self.window_size[1] + 1, -1]) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.transpose(
[2, 0, 1]) # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
if _model_size in _model_diff[
'add_shared_rel_pos_bias'] and rel_pos_bias is not None:
attn = attn + rel_pos_bias
attn = nn.functional.softmax(attn, axis=-1)
attn = self.attn_drop(attn)
x = (attn.matmul(v)).transpose((0, 2, 1, 3)).reshape((-1, N, C))
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Layer):
def __init__(self,
dim,
num_heads,
model_name,
mlp_ratio=4.,
qkv_bias=False,
qk_scale=None,
drop=0.,
init_values=0.,
attn_drop=0.,
drop_path=0.,
act_layer=nn.GELU,
norm_layer='nn.LayerNorm',
epsilon=1e-5,
window_size=None):
super().__init__()
global _model_size
global _model_diff
self._model_name = model_name
if isinstance(norm_layer, str):
self.norm1 = eval(norm_layer)(dim, epsilon=epsilon)
elif isinstance(norm_layer, Callable):
self.norm1 = norm_layer(dim)
else:
raise TypeError(
"The norm_layer must be str or paddle.nn.layer.Layer class")
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
model_name=self._model_name,
window_size=window_size)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity()
if _model_size in _model_diff['add_mul_gamma_to_msa_mlp']:
self.gamma_1 = self.create_parameter(
[dim],
default_initializer=nn.initializer.Constant(value=init_values))
self.gamma_2 = self.create_parameter(
[dim],
default_initializer=nn.initializer.Constant(value=init_values))
else:
self.gamma_1 = None
self.gamma_2 = None
if isinstance(norm_layer, str):
self.norm2 = eval(norm_layer)(dim, epsilon=epsilon)
elif isinstance(norm_layer, Callable):
self.norm2 = norm_layer(dim)
else:
raise TypeError(
"The norm_layer must be str or paddle.nn.layer.Layer class")
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop)
def forward(self, x, rel_pos_bias=None):
if self.gamma_1 is not None:
x = x + self.drop_path(self.gamma_1 * self.attn(
self.norm1(x), rel_pos_bias=rel_pos_bias))
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
else:
x = x + self.drop_path(
self.attn(
self.norm1(x), rel_pos_bias=rel_pos_bias))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class RelativePositionBias(nn.Layer):
def __init__(self, window_size, num_heads):
super().__init__()
self.window_size = window_size
self.num_relative_distance = (2 * window_size[0] - 1) * (
2 * window_size[1] - 1) + 3
self.relative_position_bias_table = self.create_parameter(
[self.num_relative_distance, num_heads],
default_initializer=zeros_) # 2*Wh-1 * 2*Ww-1, nH
# cls to token & token 2 cls & cls to cls
# get pair-wise relative position index for each token inside the window
coords_h = paddle.arange(window_size[0])
coords_w = paddle.arange(window_size[1])
coords = paddle.stack(paddle.meshgrid(
[coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = paddle.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :,
None] - coords_flatten[:,
None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.transpose(
[1, 2, 0]) # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = \
paddle.zeros((window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
relative_position_index[1:, 1:] = relative_coords.sum(
-1) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = self.num_relative_distance - 3
relative_position_index[0:, 0] = self.num_relative_distance - 2
relative_position_index[0, 0] = self.num_relative_distance - 1
self.register_buffer("relative_position_index",
relative_position_index)
# trunc_normal_(self.relative_position_bias_table, std=.02)
def forward(self):
relative_position_bias = \
self.relative_position_bias_table[self.relative_position_index.reshape([-1])].reshape([
self.window_size[0] * self.window_size[1] + 1,
self.window_size[0] * self.window_size[1] + 1, -1]) # Wh*Ww,Wh*Ww,nH
return relative_position_bias.transpose([2, 0, 1]) # nH, Wh*Ww, Wh*Ww
class PatchEmbed(nn.Layer):
""" Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * \
(img_size[0] // patch_size[0])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2D(
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
B, C, H, W = x.shape
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x).flatten(2).transpose((0, 2, 1))
return x
class Head(nn.Layer):
def __init__(self, embed_dim, class_num, norm_layer, model_size, setting):
super().__init__()
self.model_size = model_size
self.setting = setting
self.fc_norm = eval(norm_layer)(
embed_dim,
epsilon=1e-5) if model_size in setting['fc_norm'] else None
self.return_all_tokens = model_size in setting['return_all_tokens']
self.return_patch_tokens = model_size in setting['return_patch_tokens']
self.fc_head = nn.Linear(embed_dim,
class_num) if class_num > 0 else Identity()
def forward(self, x):
if self.fc_norm is not None:
if self.return_all_tokens:
x = self.fc_norm(x)
else:
t = x[:, 1:]
if self.return_patch_tokens:
x = self.fc_norm(t)
else:
x = self.fc_norm(t.mean(1))
else:
if self.return_all_tokens:
x = x
elif self.return_patch_tokens:
x = x[:, 1:]
else:
x = x[:, 0]
return self.fc_head(x)
class VisionTransformer(nn.Layer):
""" Vision Transformer with support for patch input
"""
def __init__(self,
model_name,
img_size=224,
patch_size=16,
in_chans=3,
class_num=1000,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=False,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.,
norm_layer='nn.LayerNorm',
epsilon=1e-5,
**kwargs):
super().__init__()
global _model_diff
global _model_size
_model_split = model_name.split('_')
self.model_name = _model_split[0]
self.model_size = '_'.join(_model_split[1:])
_model_size = self.model_size
_model_diff = eval(f'_{self.model_name}_diff')
self.class_num = class_num
self.return_embed = kwargs.get('return_embed', True)
self.num_features = self.embed_dim = embed_dim
_img_size = to_2tuple(img_size)
_patch_size = to_2tuple(patch_size)
self.window_size = (_img_size[0] // _patch_size[0],
_img_size[1] // _patch_size[1])
self.patch_embed = PatchEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim)
num_patches = self.patch_embed.num_patches
if _model_size in _model_diff['add_shared_rel_pos_bias']:
self.rel_pos_bias = RelativePositionBias(
window_size=self.window_size, num_heads=num_heads)
self.ln_pre = nn.LayerNorm(embed_dim) if _model_size in _model_diff[
'add_layer_norm_before_encoder'] else nn.Identity()
if _model_size in _model_diff['remove_cls_token']:
self.pos_embed = self.create_parameter(
shape=(1, num_patches, embed_dim), default_initializer=zeros_)
self.cls_token = None
else:
self.pos_embed = self.create_parameter(
shape=(1, num_patches + 1, embed_dim),
default_initializer=zeros_)
self.cls_token = self.create_parameter(
shape=(1, 1, embed_dim), default_initializer=zeros_)
self.add_parameter("cls_token", self.cls_token)
if _model_size in _model_diff['remove_abs_pos_emb']:
self.pos_embed = None
else:
self.add_parameter("pos_embed", self.pos_embed)
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = np.linspace(0, drop_path_rate, depth)
self.blocks = nn.LayerList([
Block(
dim=embed_dim,
num_heads=num_heads,
model_name=self.model_name,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
epsilon=epsilon,
window_size=self.window_size) for i in range(depth)
])
self.norm = eval(norm_layer)(embed_dim, epsilon=epsilon)
self.head = Identity() if self.return_embed else Head(
embed_dim, class_num, norm_layer, self.model_size,
_model_diff['head'])
if self.pos_embed is not None:
trunc_normal_(self.pos_embed)
if not _model_size in _model_diff['remove_cls_token']:
trunc_normal_(self.cls_token)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
zeros_(m.bias)
elif isinstance(m, nn.LayerNorm):
zeros_(m.bias)
ones_(m.weight)
def forward_features(self, x):
# B = x.shape[0]
B = paddle.shape(x)[0]
x = self.patch_embed(x)
if not _model_size in _model_diff['remove_cls_token']:
cls_tokens = self.cls_token.expand((B, -1, -1))
x = paddle.concat((cls_tokens, x), axis=1)
if self.pos_embed is not None:
x = x + self.pos_embed
x = self.ln_pre(x)
x = self.pos_drop(x)
rel_pos_bias = self.rel_pos_bias() if hasattr(self,
'rel_pos_bias') else None
for blk in self.blocks:
x = blk(x, rel_pos_bias=rel_pos_bias)
x = self.norm(x)
return x
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
if pretrained is False:
pass
elif pretrained is True:
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
elif isinstance(pretrained, str):
load_dygraph_pretrain(model, pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type."
)
def CLIP_vit_base_patch32_224(pretrained=False, use_ssld=False, **kwargs):
model_name = sys._getframe().f_code.co_name
model = VisionTransformer(
model_name=model_name,
img_size=224,
patch_size=32,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
epsilon=1e-5,
**kwargs, )
_load_pretrained(
pretrained, model, MODEL_URLS[model_name], use_ssld=use_ssld)
return model
def CLIP_vit_base_patch16_224(pretrained=False, use_ssld=False, **kwargs):
model_name = sys._getframe().f_code.co_name
model = VisionTransformer(
model_name=model_name,
img_size=224,
patch_size=16,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
epsilon=1e-5,
**kwargs, )
_load_pretrained(
pretrained, model, MODEL_URLS[model_name], use_ssld=use_ssld)
return model
def CLIP_vit_large_patch14_336(pretrained=False, use_ssld=False, **kwargs):
model_name = sys._getframe().f_code.co_name
model = VisionTransformer(
model_name=model_name,
img_size=336,
patch_size=14,
embed_dim=1024,
depth=24,
num_heads=16,
mlp_ratio=4,
qkv_bias=True,
epsilon=1e-5,
**kwargs, )
_load_pretrained(
pretrained, model, MODEL_URLS[model_name], use_ssld=use_ssld)
return model
def CLIP_vit_large_patch14_224(pretrained=False, use_ssld=False, **kwargs):
model_name = sys._getframe().f_code.co_name
model = VisionTransformer(
model_name=model_name,
img_size=224,
patch_size=14,
embed_dim=1024,
depth=24,
num_heads=16,
mlp_ratio=4,
qkv_bias=True,
epsilon=1e-5,
**kwargs, )
_load_pretrained(
pretrained, model, MODEL_URLS[model_name], use_ssld=use_ssld)
return model
def BEiTv2_vit_base_patch16_224(pretrained=False, use_ssld=False, **kwargs):
model_name = sys._getframe().f_code.co_name
model = VisionTransformer(
model_name=model_name,
img_size=224,
patch_size=16,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
epsilon=1e-6,
**kwargs, )
_load_pretrained(
pretrained, model, MODEL_URLS[model_name], use_ssld=use_ssld)
return model
def BEiTv2_vit_large_patch16_224(pretrained=False, use_ssld=False, **kwargs):
model_name = sys._getframe().f_code.co_name
model = VisionTransformer(
model_name=model_name,
img_size=224,
patch_size=16,
embed_dim=1024,
depth=24,
num_heads=16,
mlp_ratio=4,
qkv_bias=True,
epsilon=1e-6,
**kwargs, )
_load_pretrained(
pretrained, model, MODEL_URLS[model_name], use_ssld=use_ssld)
return model
def MOCOV3_vit_small(pretrained=False, use_ssld=False, **kwargs):
"""
vit small in mocov3
"""
model_name = sys._getframe().f_code.co_name
model = VisionTransformer(
model_name=model_name,
patch_size=16,
embed_dim=384,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
**kwargs, )
_load_pretrained(
pretrained, model, MODEL_URLS[model_name], use_ssld=use_ssld)
return model
def MOCOV3_vit_base(pretrained=False, use_ssld=False, **kwargs):
"""
vit base in mocov3
"""
model_name = sys._getframe().f_code.co_name
model = VisionTransformer(
model_name=model_name,
patch_size=16,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
**kwargs, )
_load_pretrained(
pretrained, model, MODEL_URLS[model_name], use_ssld=use_ssld)
return model
def MAE_vit_base_patch16(pretrained=False, use_ssld=False, **kwargs):
model_name = sys._getframe().f_code.co_name
model = VisionTransformer(
model_name=model_name,
patch_size=16,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
**kwargs, )
_load_pretrained(
pretrained, model, MODEL_URLS[model_name], use_ssld=use_ssld)
return model
def MAE_vit_large_patch16(pretrained=False, use_ssld=False, **kwargs):
model_name = sys._getframe().f_code.co_name
model = VisionTransformer(
model_name=model_name,
patch_size=16,
embed_dim=1024,
depth=24,
num_heads=16,
mlp_ratio=4,
qkv_bias=True,
**kwargs, )
_load_pretrained(
pretrained, model, MODEL_URLS[model_name], use_ssld=use_ssld)
return model
def MAE_vit_huge_patch14(pretrained=False, use_ssld=False, **kwargs):
model_name = sys._getframe().f_code.co_name
model = VisionTransformer(
model_name=model_name,
patch_size=14,
embed_dim=1280,
depth=32,
num_heads=16,
mlp_ratio=4,
qkv_bias=True,
**kwargs, )
_load_pretrained(
pretrained, model, MODEL_URLS[model_name], use_ssld=use_ssld)
return model
def EVA_vit_giant_patch14(pretrained=False, use_ssld=False, **kwargs):
model_name = sys._getframe().f_code.co_name
model = VisionTransformer(
model_name=model_name,
patch_size=14,
embed_dim=1408,
depth=40,
num_heads=16,
init_values=None,
mlp_ratio=4.3637,
qkv_bias=True,
class_num=0,
**kwargs, )
_load_pretrained(
pretrained, model, MODEL_URLS[model_name], use_ssld=use_ssld)
return model
def CAE_vit_base_patch16_224(pretrained=False, use_ssld=False, **kwargs):
model_name = sys._getframe().f_code.co_name
model = VisionTransformer(
model_name=model_name,
img_size=224,
patch_size=16,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
epsilon=1e-6,
**kwargs, )
_load_pretrained(
pretrained, model, MODEL_URLS[model_name], use_ssld=use_ssld)
return model