628 lines
22 KiB
Python
628 lines
22 KiB
Python
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import collections
|
|
import re
|
|
import math
|
|
import copy
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
from .layers import conv2d, init_batch_norm_layer, init_fc_layer
|
|
|
|
__all__ = [
|
|
'EfficientNetLite', 'EfficientNetLite0', 'EfficientNetLite1',
|
|
'EfficientNetLite2', 'EfficientNetLite3', 'EfficientNetLite4'
|
|
]
|
|
|
|
GlobalParams = collections.namedtuple('GlobalParams', [
|
|
'batch_norm_momentum', 'batch_norm_epsilon', 'dropout_rate', 'num_classes',
|
|
'width_coefficient', 'depth_coefficient', 'depth_divisor', 'min_depth',
|
|
'drop_connect_rate', 'fix_head_stem', 'relu_fn', 'local_pooling'
|
|
])
|
|
|
|
BlockArgs = collections.namedtuple('BlockArgs', [
|
|
'kernel_size', 'num_repeat', 'input_filters', 'output_filters',
|
|
'expand_ratio', 'id_skip', 'stride', 'se_ratio'
|
|
])
|
|
|
|
GlobalParams.__new__.__defaults__ = (None, ) * len(GlobalParams._fields)
|
|
BlockArgs.__new__.__defaults__ = (None, ) * len(BlockArgs._fields)
|
|
|
|
|
|
def efficientnet_lite_params(model_name):
|
|
""" Map EfficientNet model name to parameter coefficients. """
|
|
params_dict = {
|
|
# Coefficients: width,depth,resolution,dropout
|
|
'efficientnet-lite0': (1.0, 1.0, 224, 0.2),
|
|
'efficientnet-lite1': (1.0, 1.1, 240, 0.2),
|
|
'efficientnet-lite2': (1.1, 1.2, 260, 0.3),
|
|
'efficientnet-lite3': (1.2, 1.4, 280, 0.3),
|
|
'efficientnet-lite4': (1.4, 1.8, 300, 0.3),
|
|
}
|
|
return params_dict[model_name]
|
|
|
|
|
|
def efficientnet_lite(width_coefficient=None,
|
|
depth_coefficient=None,
|
|
dropout_rate=0.2,
|
|
drop_connect_rate=0.2):
|
|
""" Get block arguments according to parameter and coefficients. """
|
|
blocks_args = [
|
|
'r1_k3_s11_e1_i32_o16_se0.25',
|
|
'r2_k3_s22_e6_i16_o24_se0.25',
|
|
'r2_k5_s22_e6_i24_o40_se0.25',
|
|
'r3_k3_s22_e6_i40_o80_se0.25',
|
|
'r3_k5_s11_e6_i80_o112_se0.25',
|
|
'r4_k5_s22_e6_i112_o192_se0.25',
|
|
'r1_k3_s11_e6_i192_o320_se0.25',
|
|
]
|
|
blocks_args = BlockDecoder.decode(blocks_args)
|
|
|
|
global_params = GlobalParams(
|
|
batch_norm_momentum=0.99,
|
|
batch_norm_epsilon=1e-3,
|
|
dropout_rate=dropout_rate,
|
|
drop_connect_rate=drop_connect_rate,
|
|
num_classes=1000,
|
|
width_coefficient=width_coefficient,
|
|
depth_coefficient=depth_coefficient,
|
|
depth_divisor=8,
|
|
min_depth=None,
|
|
# FOR LITE, use relu6 for easier quantization
|
|
relu_fn=True,
|
|
# FOR LITE, Don't scale in Lite model
|
|
fix_head_stem=True,
|
|
# FOR LITE,
|
|
local_pooling=True)
|
|
|
|
return blocks_args, global_params
|
|
|
|
|
|
def get_model_params(model_name, override_params):
|
|
""" Get the block args and global params for a given model """
|
|
if model_name.startswith('efficientnet-lite'):
|
|
w, d, _, p = efficientnet_lite_params(model_name)
|
|
blocks_args, global_params = efficientnet_lite(
|
|
width_coefficient=w, depth_coefficient=d, dropout_rate=p)
|
|
else:
|
|
raise NotImplementedError('model name is not pre-defined: %s' %
|
|
model_name)
|
|
if override_params:
|
|
global_params = global_params._replace(**override_params)
|
|
return blocks_args, global_params
|
|
|
|
|
|
def round_filters(filters, global_params, skip=False):
|
|
""" Calculate and round number of filters based on depth multiplier. """
|
|
multiplier = global_params.width_coefficient
|
|
if skip or not multiplier:
|
|
return filters
|
|
divisor = global_params.depth_divisor
|
|
min_depth = global_params.min_depth
|
|
filters *= multiplier
|
|
min_depth = min_depth or divisor
|
|
new_filters = max(min_depth,
|
|
int(filters + divisor / 2) // divisor * divisor)
|
|
if new_filters < 0.9 * filters: # prevent rounding by more than 10%
|
|
new_filters += divisor
|
|
return int(new_filters)
|
|
|
|
|
|
def round_repeats(repeats, global_params, skip=False):
|
|
""" Round number of filters based on depth multiplier. """
|
|
multiplier = global_params.depth_coefficient
|
|
if skip or not multiplier:
|
|
return repeats
|
|
return int(math.ceil(multiplier * repeats))
|
|
|
|
|
|
class EfficientNetLite():
|
|
def __init__(
|
|
self,
|
|
name='lite0',
|
|
padding_type='SAME',
|
|
override_params=None,
|
|
is_test=False,
|
|
# For Lite, Don't use SE
|
|
use_se=False):
|
|
valid_names = ['lite' + str(i) for i in range(5)]
|
|
assert name in valid_names, 'efficientlite name should be in b0~b7'
|
|
model_name = 'efficientnet-' + name
|
|
self._blocks_args, self._global_params = get_model_params(
|
|
model_name, override_params)
|
|
print("global_params", self._global_params)
|
|
self._bn_mom = self._global_params.batch_norm_momentum
|
|
self._bn_eps = self._global_params.batch_norm_epsilon
|
|
self.is_test = is_test
|
|
self.padding_type = padding_type
|
|
self.use_se = use_se
|
|
self._relu_fn = self._global_params.relu_fn
|
|
self._fix_head_stem = self._global_params.fix_head_stem
|
|
self.local_pooling = self._global_params.local_pooling
|
|
# NCHW spatial: HW
|
|
self._spatial_dims = [2, 3]
|
|
|
|
def net(self, input, class_dim=1000, is_test=False):
|
|
|
|
conv = self.extract_features(input, is_test=is_test)
|
|
|
|
out_channels = round_filters(1280, self._global_params,
|
|
self._fix_head_stem)
|
|
conv = self.conv_bn_layer(
|
|
conv,
|
|
num_filters=out_channels,
|
|
filter_size=1,
|
|
bn_act='relu6' if self._relu_fn else 'swish', # for lite
|
|
bn_mom=self._bn_mom,
|
|
bn_eps=self._bn_eps,
|
|
padding_type=self.padding_type,
|
|
name='',
|
|
conv_name='_conv_head',
|
|
bn_name='_bn1')
|
|
|
|
pool = fluid.layers.pool2d(
|
|
input=conv, pool_type='avg', global_pooling=True, use_cudnn=False)
|
|
|
|
if self._global_params.dropout_rate:
|
|
pool = fluid.layers.dropout(
|
|
pool,
|
|
self._global_params.dropout_rate,
|
|
dropout_implementation='upscale_in_train')
|
|
|
|
param_attr, bias_attr = init_fc_layer(class_dim, '_fc')
|
|
out = fluid.layers.fc(pool,
|
|
class_dim,
|
|
name='_fc',
|
|
param_attr=param_attr,
|
|
bias_attr=bias_attr)
|
|
return out
|
|
|
|
def _drop_connect(self, inputs, prob, is_test):
|
|
if is_test:
|
|
return inputs
|
|
keep_prob = 1.0 - prob
|
|
inputs_shape = fluid.layers.shape(inputs)
|
|
random_tensor = keep_prob + fluid.layers.uniform_random(
|
|
shape=[inputs_shape[0], 1, 1, 1], min=0., max=1.)
|
|
binary_tensor = fluid.layers.floor(random_tensor)
|
|
output = inputs / keep_prob * binary_tensor
|
|
return output
|
|
|
|
def _expand_conv_norm(self, inputs, block_args, is_test, name=None):
|
|
# Expansion phase
|
|
oup = block_args.input_filters * \
|
|
block_args.expand_ratio # number of output channels
|
|
|
|
if block_args.expand_ratio != 1:
|
|
conv = self.conv_bn_layer(
|
|
inputs,
|
|
num_filters=oup,
|
|
filter_size=1,
|
|
bn_act=None,
|
|
bn_mom=self._bn_mom,
|
|
bn_eps=self._bn_eps,
|
|
padding_type=self.padding_type,
|
|
name=name,
|
|
conv_name=name + '_expand_conv',
|
|
bn_name='_bn0')
|
|
|
|
return conv
|
|
|
|
def _depthwise_conv_norm(self, inputs, block_args, is_test, name=None):
|
|
k = block_args.kernel_size
|
|
s = block_args.stride
|
|
if isinstance(s, list) or isinstance(s, tuple):
|
|
s = s[0]
|
|
oup = block_args.input_filters * \
|
|
block_args.expand_ratio # number of output channels
|
|
|
|
conv = self.conv_bn_layer(
|
|
inputs,
|
|
num_filters=oup,
|
|
filter_size=k,
|
|
stride=s,
|
|
num_groups=oup,
|
|
bn_act=None,
|
|
padding_type=self.padding_type,
|
|
bn_mom=self._bn_mom,
|
|
bn_eps=self._bn_eps,
|
|
name=name,
|
|
use_cudnn=False,
|
|
conv_name=name + '_depthwise_conv',
|
|
bn_name='_bn1')
|
|
|
|
return conv
|
|
|
|
def _project_conv_norm(self, inputs, block_args, is_test, name=None):
|
|
final_oup = block_args.output_filters
|
|
conv = self.conv_bn_layer(
|
|
inputs,
|
|
num_filters=final_oup,
|
|
filter_size=1,
|
|
bn_act=None,
|
|
padding_type=self.padding_type,
|
|
bn_mom=self._bn_mom,
|
|
bn_eps=self._bn_eps,
|
|
name=name,
|
|
conv_name=name + '_project_conv',
|
|
bn_name='_bn2')
|
|
return conv
|
|
|
|
def conv_bn_layer(
|
|
self,
|
|
input,
|
|
filter_size,
|
|
num_filters,
|
|
stride=1,
|
|
num_groups=1,
|
|
padding_type="SAME",
|
|
conv_act=None,
|
|
bn_act='relu6', # if self._relu_fn else 'swish',
|
|
use_cudnn=True,
|
|
use_bn=True,
|
|
bn_mom=0.9,
|
|
bn_eps=1e-05,
|
|
use_bias=False,
|
|
name=None,
|
|
conv_name=None,
|
|
bn_name=None):
|
|
conv = conv2d(
|
|
input=input,
|
|
num_filters=num_filters,
|
|
filter_size=filter_size,
|
|
stride=stride,
|
|
groups=num_groups,
|
|
act=conv_act,
|
|
padding_type=padding_type,
|
|
use_cudnn=use_cudnn,
|
|
name=conv_name,
|
|
use_bias=use_bias)
|
|
|
|
if use_bn is False:
|
|
return conv
|
|
else:
|
|
bn_name = name + bn_name
|
|
param_attr, bias_attr = init_batch_norm_layer(bn_name)
|
|
return fluid.layers.batch_norm(
|
|
input=conv,
|
|
act=bn_act,
|
|
momentum=bn_mom,
|
|
epsilon=bn_eps,
|
|
name=bn_name,
|
|
moving_mean_name=bn_name + '_mean',
|
|
moving_variance_name=bn_name + '_variance',
|
|
param_attr=param_attr,
|
|
bias_attr=bias_attr)
|
|
|
|
def _conv_stem_norm(self, inputs, is_test):
|
|
out_channels = round_filters(32, self._global_params,
|
|
self._fix_head_stem)
|
|
bn = self.conv_bn_layer(
|
|
inputs,
|
|
num_filters=out_channels,
|
|
filter_size=3,
|
|
stride=2,
|
|
bn_act=None,
|
|
bn_mom=self._bn_mom,
|
|
padding_type=self.padding_type,
|
|
bn_eps=self._bn_eps,
|
|
name='',
|
|
conv_name='_conv_stem',
|
|
bn_name='_bn0')
|
|
|
|
return bn
|
|
|
|
def mb_conv_block(self,
|
|
inputs,
|
|
block_args,
|
|
is_test=False,
|
|
drop_connect_rate=None,
|
|
name=None):
|
|
# Expansion and Depthwise Convolution
|
|
oup = block_args.input_filters * \
|
|
block_args.expand_ratio # number of output channels
|
|
has_se = self.use_se and (block_args.se_ratio is not None) and (
|
|
0 < block_args.se_ratio <= 1)
|
|
id_skip = block_args.id_skip # skip connection and drop connect
|
|
conv = inputs
|
|
if block_args.expand_ratio != 1:
|
|
if self._relu_fn:
|
|
conv = fluid.layers.relu6(
|
|
self._expand_conv_norm(conv, block_args, is_test, name))
|
|
else:
|
|
conv = fluid.layers.swish(
|
|
self._expand_conv_norm(conv, block_args, is_test, name))
|
|
|
|
if self._relu_fn:
|
|
conv = fluid.layers.relu6(
|
|
self._depthwise_conv_norm(conv, block_args, is_test, name))
|
|
else:
|
|
conv = fluid.layers.swish(
|
|
self._depthwise_conv_norm(conv, block_args, is_test, name))
|
|
|
|
# Squeeze and Excitation
|
|
if has_se:
|
|
num_squeezed_channels = max(
|
|
1, int(block_args.input_filters * block_args.se_ratio))
|
|
conv = self.se_block(conv, num_squeezed_channels, oup, name)
|
|
|
|
conv = self._project_conv_norm(conv, block_args, is_test, name)
|
|
|
|
# Skip connection and drop connect
|
|
input_filters = block_args.input_filters
|
|
output_filters = block_args.output_filters
|
|
if id_skip and \
|
|
block_args.stride == 1 and \
|
|
input_filters == output_filters:
|
|
if drop_connect_rate:
|
|
conv = self._drop_connect(conv, drop_connect_rate,
|
|
self.is_test)
|
|
conv = fluid.layers.elementwise_add(conv, inputs)
|
|
|
|
return conv
|
|
|
|
def se_block(self, inputs, num_squeezed_channels, oup, name):
|
|
|
|
if self.local_pooling:
|
|
shape = inputs.shape
|
|
x_squeezed = fluid.layers.pool2d(
|
|
input=inputs,
|
|
pool_size=[
|
|
shape[self._spatial_dims[0]], shape[self._spatial_dims[1]]
|
|
],
|
|
pool_stride=[1, 1],
|
|
pool_padding='VALID')
|
|
else:
|
|
# same as tf: reduce_sum
|
|
x_squeezed = fluid.layers.pool2d(
|
|
input=inputs,
|
|
pool_type='avg',
|
|
global_pooling=True,
|
|
use_cudnn=False)
|
|
x_squeezed = conv2d(
|
|
x_squeezed,
|
|
num_filters=num_squeezed_channels,
|
|
filter_size=1,
|
|
use_bias=True,
|
|
padding_type=self.padding_type,
|
|
act='relu6' if self._relu_fn else 'swish',
|
|
name=name + '_se_reduce')
|
|
x_squeezed = conv2d(
|
|
x_squeezed,
|
|
num_filters=oup,
|
|
filter_size=1,
|
|
use_bias=True,
|
|
padding_type=self.padding_type,
|
|
name=name + '_se_expand')
|
|
#se_out = inputs * fluid.layers.sigmoid(x_squeezed)
|
|
se_out = fluid.layers.elementwise_mul(
|
|
inputs, fluid.layers.sigmoid(x_squeezed), axis=-1)
|
|
return se_out
|
|
|
|
def extract_features(self, inputs, is_test):
|
|
""" Returns output of the final convolution layer """
|
|
|
|
if self._relu_fn:
|
|
conv = fluid.layers.relu6(
|
|
self._conv_stem_norm(
|
|
inputs, is_test=is_test))
|
|
else:
|
|
fluid.layers.swish(self._conv_stem_norm(inputs, is_test=is_test))
|
|
|
|
block_args_copy = copy.deepcopy(self._blocks_args)
|
|
idx = 0
|
|
block_size = 0
|
|
for i, block_arg in enumerate(block_args_copy):
|
|
block_arg = block_arg._replace(
|
|
input_filters=round_filters(block_arg.input_filters,
|
|
self._global_params),
|
|
output_filters=round_filters(block_arg.output_filters,
|
|
self._global_params),
|
|
# Lite
|
|
num_repeat=block_arg.num_repeat if self._fix_head_stem and
|
|
(i == 0 or i == len(block_args_copy) - 1) else round_repeats(
|
|
block_arg.num_repeat, self._global_params))
|
|
|
|
block_size += 1
|
|
for _ in range(block_arg.num_repeat - 1):
|
|
block_size += 1
|
|
|
|
for i, block_args in enumerate(self._blocks_args):
|
|
|
|
# Update block input and output filters based on depth multiplier.
|
|
block_args = block_args._replace(
|
|
input_filters=round_filters(block_args.input_filters,
|
|
self._global_params),
|
|
output_filters=round_filters(block_args.output_filters,
|
|
self._global_params),
|
|
|
|
# Lite
|
|
num_repeat=block_args.num_repeat if self._fix_head_stem and
|
|
(i == 0 or i == len(self._blocks_args) - 1) else
|
|
round_repeats(block_args.num_repeat, self._global_params))
|
|
|
|
# The first block needs to take care of stride,
|
|
# and filter size increase.
|
|
drop_connect_rate = self._global_params.drop_connect_rate
|
|
if drop_connect_rate:
|
|
drop_connect_rate *= float(idx) / block_size
|
|
conv = self.mb_conv_block(conv, block_args, is_test,
|
|
drop_connect_rate,
|
|
'_blocks.' + str(idx) + '.')
|
|
|
|
idx += 1
|
|
if block_args.num_repeat > 1:
|
|
block_args = block_args._replace(
|
|
input_filters=block_args.output_filters, stride=1)
|
|
for _ in range(block_args.num_repeat - 1):
|
|
drop_connect_rate = self._global_params.drop_connect_rate
|
|
if drop_connect_rate:
|
|
drop_connect_rate *= float(idx) / block_size
|
|
conv = self.mb_conv_block(conv, block_args, is_test,
|
|
drop_connect_rate,
|
|
'_blocks.' + str(idx) + '.')
|
|
idx += 1
|
|
|
|
return conv
|
|
|
|
def shortcut(self, input, data_residual):
|
|
return fluid.layers.elementwise_add(input, data_residual)
|
|
|
|
|
|
class BlockDecoder(object):
|
|
"""
|
|
Block Decoder, straight from the official TensorFlow repository.
|
|
"""
|
|
|
|
@staticmethod
|
|
def _decode_block_string(block_string):
|
|
""" Gets a block through a string notation of arguments. """
|
|
assert isinstance(block_string, str)
|
|
|
|
ops = block_string.split('_')
|
|
options = {}
|
|
for op in ops:
|
|
splits = re.split(r'(\d.*)', op)
|
|
if len(splits) >= 2:
|
|
key, value = splits[:2]
|
|
options[key] = value
|
|
|
|
# Check stride
|
|
cond_1 = ('s' in options and len(options['s']) == 1)
|
|
cond_2 = ((len(options['s']) == 2) and
|
|
(options['s'][0] == options['s'][1]))
|
|
assert (cond_1 or cond_2)
|
|
|
|
return BlockArgs(
|
|
kernel_size=int(options['k']),
|
|
num_repeat=int(options['r']),
|
|
input_filters=int(options['i']),
|
|
output_filters=int(options['o']),
|
|
expand_ratio=int(options['e']),
|
|
id_skip=('noskip' not in block_string),
|
|
se_ratio=float(options['se']) if 'se' in options else None,
|
|
stride=[int(options['s'][0])])
|
|
|
|
@staticmethod
|
|
def _encode_block_string(block):
|
|
"""Encodes a block to a string."""
|
|
args = [
|
|
'r%d' % block.num_repeat, 'k%d' % block.kernel_size, 's%d%d' %
|
|
(block.strides[0], block.strides[1]), 'e%s' % block.expand_ratio,
|
|
'i%d' % block.input_filters, 'o%d' % block.output_filters
|
|
]
|
|
if 0 < block.se_ratio <= 1:
|
|
args.append('se%s' % block.se_ratio)
|
|
if block.id_skip is False:
|
|
args.append('noskip')
|
|
return '_'.join(args)
|
|
|
|
@staticmethod
|
|
def decode(string_list):
|
|
"""
|
|
Decode a list of string notations to specify blocks in the network.
|
|
|
|
string_list: list of strings, each string is a notation of block
|
|
return
|
|
list of BlockArgs namedtuples of block args
|
|
"""
|
|
assert isinstance(string_list, list)
|
|
blocks_args = []
|
|
for block_string in string_list:
|
|
blocks_args.append(BlockDecoder._decode_block_string(block_string))
|
|
return blocks_args
|
|
|
|
@staticmethod
|
|
def encode(blocks_args):
|
|
"""
|
|
Encodes a list of BlockArgs to a list of strings.
|
|
|
|
:param blocks_args: a list of BlockArgs namedtuples of block args
|
|
:return: a list of strings, each string is a notation of block
|
|
"""
|
|
block_strings = []
|
|
for block in blocks_args:
|
|
block_strings.append(BlockDecoder._encode_block_string(block))
|
|
return block_strings
|
|
|
|
|
|
def EfficientNetLite0(is_test=False,
|
|
padding_type='SAME',
|
|
override_params=None,
|
|
use_se=True):
|
|
model = EfficientNetLite(
|
|
name='lite0',
|
|
is_test=is_test,
|
|
padding_type=padding_type,
|
|
override_params=override_params,
|
|
use_se=use_se)
|
|
return model
|
|
|
|
|
|
def EfficientNetLite1(is_test=False,
|
|
padding_type='SAME',
|
|
override_params=None,
|
|
use_se=True):
|
|
model = EfficientNetLite(
|
|
name='lite1',
|
|
is_test=is_test,
|
|
padding_type=padding_type,
|
|
override_params=override_params,
|
|
use_se=use_se)
|
|
return model
|
|
|
|
|
|
def EfficientNetLite2(is_test=False,
|
|
padding_type='SAME',
|
|
override_params=None,
|
|
use_se=True):
|
|
model = EfficientNetLite(
|
|
name='lite2',
|
|
is_test=is_test,
|
|
padding_type=padding_type,
|
|
override_params=override_params,
|
|
use_se=use_se)
|
|
return model
|
|
|
|
|
|
def EfficientNetLite3(is_test=False,
|
|
padding_type='SAME',
|
|
override_params=None,
|
|
use_se=True):
|
|
model = EfficientNetLite(
|
|
name='lite3',
|
|
is_test=is_test,
|
|
padding_type=padding_type,
|
|
override_params=override_params,
|
|
use_se=use_se)
|
|
return model
|
|
|
|
|
|
def EfficientNetLite4(is_test=False,
|
|
padding_type='SAME',
|
|
override_params=None,
|
|
use_se=True):
|
|
model = EfficientNetLite(
|
|
name='lite4',
|
|
is_test=is_test,
|
|
padding_type=padding_type,
|
|
override_params=override_params,
|
|
use_se=use_se)
|
|
return model
|