PaddleClas/ppcls/modeling/architectures/xception.py

282 lines
8.7 KiB
Python

#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import sys
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
__all__ = ['Xception', 'Xception41', 'Xception65', 'Xception71']
class Xception(object):
"""Xception"""
def __init__(self, entry_flow_block_num=3, middle_flow_block_num=8):
self.entry_flow_block_num = entry_flow_block_num
self.middle_flow_block_num = middle_flow_block_num
return
def net(self, input, class_dim=1000):
conv = self.entry_flow(input, self.entry_flow_block_num)
conv = self.middle_flow(conv, self.middle_flow_block_num)
conv = self.exit_flow(conv, class_dim)
return conv
def entry_flow(self, input, block_num=3):
'''xception entry_flow'''
name = "entry_flow"
conv = self.conv_bn_layer(
input=input,
num_filters=32,
filter_size=3,
stride=2,
act='relu',
name=name + "_conv1")
conv = self.conv_bn_layer(
input=conv,
num_filters=64,
filter_size=3,
stride=1,
act='relu',
name=name + "_conv2")
if block_num == 3:
relu_first = [False, True, True]
num_filters = [128, 256, 728]
stride = [2, 2, 2]
elif block_num == 5:
relu_first = [False, True, True, True, True]
num_filters = [128, 256, 256, 728, 728]
stride = [2, 1, 2, 1, 2]
else:
sys.exit(-1)
for block in range(block_num):
curr_name = "{}_{}".format(name, block)
conv = self.entry_flow_bottleneck_block(
conv,
num_filters=num_filters[block],
name=curr_name,
stride=stride[block],
relu_first=relu_first[block])
return conv
def entry_flow_bottleneck_block(self,
input,
num_filters,
name,
stride=2,
relu_first=False):
'''entry_flow_bottleneck_block'''
short = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=1,
stride=stride,
padding=0,
act=None,
param_attr=ParamAttr(name + "_branch1_weights"),
bias_attr=False)
conv0 = input
if relu_first:
conv0 = fluid.layers.relu(conv0)
conv1 = self.separable_conv(
conv0, num_filters, stride=1, name=name + "_branch2a_weights")
conv2 = fluid.layers.relu(conv1)
conv2 = self.separable_conv(
conv2, num_filters, stride=1, name=name + "_branch2b_weights")
pool = fluid.layers.pool2d(
input=conv2,
pool_size=3,
pool_stride=stride,
pool_padding=1,
pool_type='max')
return fluid.layers.elementwise_add(x=short, y=pool)
def middle_flow(self, input, block_num=8):
'''xception middle_flow'''
num_filters = 728
conv = input
for block in range(block_num):
name = "middle_flow_{}".format(block)
conv = self.middle_flow_bottleneck_block(conv, num_filters, name)
return conv
def middle_flow_bottleneck_block(self, input, num_filters, name):
'''middle_flow_bottleneck_block'''
conv0 = fluid.layers.relu(input)
conv0 = self.separable_conv(
conv0,
num_filters=num_filters,
stride=1,
name=name + "_branch2a_weights")
conv1 = fluid.layers.relu(conv0)
conv1 = self.separable_conv(
conv1,
num_filters=num_filters,
stride=1,
name=name + "_branch2b_weights")
conv2 = fluid.layers.relu(conv1)
conv2 = self.separable_conv(
conv2,
num_filters=num_filters,
stride=1,
name=name + "_branch2c_weights")
return fluid.layers.elementwise_add(x=input, y=conv2)
def exit_flow(self, input, class_dim):
'''xception exit flow'''
name = "exit_flow"
num_filters1 = 728
num_filters2 = 1024
conv0 = self.exit_flow_bottleneck_block(
input, num_filters1, num_filters2, name=name + "_1")
conv1 = self.separable_conv(
conv0, num_filters=1536, stride=1, name=name + "_2")
conv1 = fluid.layers.relu(conv1)
conv2 = self.separable_conv(
conv1, num_filters=2048, stride=1, name=name + "_3")
conv2 = fluid.layers.relu(conv2)
pool = fluid.layers.pool2d(
input=conv2, pool_type='avg', global_pooling=True)
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
out = fluid.layers.fc(
input=pool,
size=class_dim,
param_attr=fluid.param_attr.ParamAttr(
name='fc_weights',
initializer=fluid.initializer.Uniform(-stdv, stdv)),
bias_attr=fluid.param_attr.ParamAttr(name='fc_offset'))
return out
def exit_flow_bottleneck_block(self, input, num_filters1, num_filters2,
name):
'''entry_flow_bottleneck_block'''
short = fluid.layers.conv2d(
input=input,
num_filters=num_filters2,
filter_size=1,
stride=2,
padding=0,
act=None,
param_attr=ParamAttr(name + "_branch1_weights"),
bias_attr=False)
conv0 = fluid.layers.relu(input)
conv1 = self.separable_conv(
conv0, num_filters1, stride=1, name=name + "_branch2a_weights")
conv2 = fluid.layers.relu(conv1)
conv2 = self.separable_conv(
conv2, num_filters2, stride=1, name=name + "_branch2b_weights")
pool = fluid.layers.pool2d(
input=conv2,
pool_size=3,
pool_stride=2,
pool_padding=1,
pool_type='max')
return fluid.layers.elementwise_add(x=short, y=pool)
def separable_conv(self, input, num_filters, stride=1, name=None):
"""separable_conv"""
pointwise_conv = self.conv_bn_layer(
input=input,
filter_size=1,
num_filters=num_filters,
stride=1,
name=name + "_sep")
depthwise_conv = self.conv_bn_layer(
input=pointwise_conv,
filter_size=3,
num_filters=num_filters,
stride=stride,
groups=num_filters,
use_cudnn=False,
name=name + "_dw")
return depthwise_conv
def conv_bn_layer(self,
input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
use_cudnn=True,
name=None):
"""conv_bn_layer"""
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False,
use_cudnn=use_cudnn)
bn_name = "bn_" + name
return fluid.layers.batch_norm(
input=conv,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def Xception41():
model = Xception(entry_flow_block_num=3, middle_flow_block_num=8)
return model
def Xception65():
model = Xception(entry_flow_block_num=3, middle_flow_block_num=16)
return model
def Xception71():
model = Xception(entry_flow_block_num=5, middle_flow_block_num=16)
return model