PaddleClas/ppcls/arch/backbone/model_zoo/mobilevit_v3.py

1212 lines
39 KiB
Python

# copyright (c) 2023 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Code was based on https://github.com/micronDLA/MobileViTv3/blob/main/MobileViTv3-v1/cvnets/models/classification/mobilevit.py
# reference: https://arxiv.org/abs/2209.15159
import math
from functools import partial
from typing import Dict, Optional, Tuple, Union
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
MODEL_URLS = {
"MobileViTv3_XXS": "",
"MobileViTv3_XS": "",
"MobileViTv3_S": "",
"MobileViTv3_x0_5": "",
"MobileViTv3_x0_75": "",
"MobileViTv3_x1_0": "",
}
layer_norm_2d = partial(nn.GroupNorm, num_groups=1)
def make_divisible(v, divisor=8, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
if new_v < 0.9 * v:
new_v += divisor
return new_v
class InvertedResidual(nn.Layer):
"""
Inverted residual block (MobileNetv2): https://arxiv.org/abs/1801.04381
"""
def __init__(self,
in_channels: int,
out_channels: int,
stride: int,
expand_ratio: Union[int, float],
dilation: int=1) -> None:
assert stride in [1, 2]
super(InvertedResidual, self).__init__()
self.stride = stride
hidden_dim = make_divisible(int(round(in_channels * expand_ratio)), 8)
self.use_res_connect = self.stride == 1 and in_channels == out_channels
block = nn.Sequential()
if expand_ratio != 1:
block.add_sublayer(
name="exp_1x1",
sublayer=nn.Sequential(
('conv', nn.Conv2D(
in_channels, hidden_dim, 1, bias_attr=False)),
('norm', nn.BatchNorm2D(hidden_dim)), ('act', nn.Silu())))
block.add_sublayer(
name="conv_3x3",
sublayer=nn.Sequential(
('conv', nn.Conv2D(
hidden_dim,
hidden_dim,
3,
bias_attr=False,
stride=stride,
padding=dilation,
dilation=dilation,
groups=hidden_dim)), ('norm', nn.BatchNorm2D(hidden_dim)),
('act', nn.Silu())))
block.add_sublayer(
name="red_1x1",
sublayer=nn.Sequential(
('conv', nn.Conv2D(
hidden_dim, out_channels, 1, bias_attr=False)),
('norm', nn.BatchNorm2D(out_channels))))
self.block = block
self.in_channels = in_channels
self.out_channels = out_channels
self.exp = expand_ratio
self.dilation = dilation
def forward(self, x, *args, **kwargs):
if self.use_res_connect:
return x + self.block(x)
else:
return self.block(x)
class MultiHeadAttention(nn.Layer):
def __init__(self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
self.qkv_proj = nn.Linear(dim, dim * 3, bias_attr=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.out_proj = nn.Linear(dim, dim, bias_attr=qkv_bias)
def forward(self, x):
# B = paddle.shape(x)[0]
N, C = x.shape[1:]
qkv = self.qkv_proj(x).reshape((-1, N, 3, self.num_heads,
C // self.num_heads)).transpose(
(2, 0, 3, 1, 4))
q, k, v = qkv[0], qkv[1], qkv[2]
attn = (q.matmul(k.transpose((0, 1, 3, 2)))) * self.scale
attn = nn.functional.softmax(attn, axis=-1)
attn = self.attn_drop(attn)
x = (attn.matmul(v)).transpose((0, 2, 1, 3)).reshape((-1, N, C))
x = self.out_proj(x)
return x
class TransformerEncoder(nn.Layer):
"""
This class defines the Transformer encoder (pre-norm) as described in "Attention is all you need" paper
https://arxiv.org/abs/1706.03762
"""
def __init__(self,
embed_dim: int,
ffn_latent_dim: int,
num_heads: Optional[int]=8,
attn_dropout: Optional[float]=0.0,
dropout: Optional[float]=0.1,
ffn_dropout: Optional[float]=0.0,
transformer_norm_layer: nn.Layer=nn.LayerNorm):
super(TransformerEncoder, self).__init__()
self.pre_norm_mha = nn.Sequential(
transformer_norm_layer(embed_dim),
MultiHeadAttention(
embed_dim, num_heads, attn_drop=attn_dropout, qkv_bias=True),
nn.Dropout(p=dropout))
self.pre_norm_ffn = nn.Sequential(
transformer_norm_layer(embed_dim),
nn.Linear(embed_dim, ffn_latent_dim),
nn.Silu(),
nn.Dropout(p=ffn_dropout),
nn.Linear(ffn_latent_dim, embed_dim),
nn.Dropout(p=dropout))
self.embed_dim = embed_dim
self.ffn_dim = ffn_latent_dim
self.ffn_dropout = ffn_dropout
def forward(self, x):
# Multi-head attention
x = x + self.pre_norm_mha(x)
# Feed forward network
x = x + self.pre_norm_ffn(x)
return x
class MobileViTv3Block(nn.Layer):
"""
MobileViTv3 block
"""
def __init__(self,
in_channels: int,
transformer_dim: int,
ffn_dim: int,
n_transformer_blocks: Optional[int]=2,
head_dim: Optional[int]=32,
attn_dropout: Optional[float]=0.1,
dropout: Optional[int]=0.1,
ffn_dropout: Optional[int]=0.1,
patch_h: Optional[int]=8,
patch_w: Optional[int]=8,
transformer_norm_layer: nn.Layer=nn.LayerNorm,
conv_ksize: Optional[int]=3,
dilation: Optional[int]=1,
var_ffn: Optional[bool]=False,
no_fusion: Optional[bool]=False):
# For MobileViTv3: Normal 3x3 convolution --> Depthwise 3x3 convolution
padding = (conv_ksize - 1) // 2 * dilation
conv_3x3_in = nn.Sequential(
('conv', nn.Conv2D(
in_channels,
in_channels,
conv_ksize,
bias_attr=False,
padding=padding,
dilation=dilation,
groups=in_channels)), ('norm', nn.BatchNorm2D(in_channels)),
('act', nn.Silu()))
conv_1x1_in = nn.Sequential(('conv', nn.Conv2D(
in_channels, transformer_dim, 1, bias_attr=False)))
conv_1x1_out = nn.Sequential(
('conv', nn.Conv2D(
transformer_dim, in_channels, 1, bias_attr=False)),
('norm', nn.BatchNorm2D(in_channels)), ('act', nn.Silu()))
conv_3x3_out = None
# For MobileViTv3: input+global --> local+global
if not no_fusion:
#input_ch = tr_dim + in_ch
conv_3x3_out = nn.Sequential(
('conv', nn.Conv2D(
transformer_dim + in_channels,
in_channels,
1,
bias_attr=False)), ('norm', nn.BatchNorm2D(in_channels)),
('act', nn.Silu()))
super().__init__()
self.local_rep = nn.Sequential()
self.local_rep.add_sublayer(name="conv_3x3", sublayer=conv_3x3_in)
self.local_rep.add_sublayer(name="conv_1x1", sublayer=conv_1x1_in)
assert transformer_dim % head_dim == 0
num_heads = transformer_dim // head_dim
ffn_dims = [ffn_dim] * n_transformer_blocks
global_rep = [
TransformerEncoder(
embed_dim=transformer_dim,
ffn_latent_dim=ffn_dims[block_idx],
num_heads=num_heads,
attn_dropout=attn_dropout,
dropout=dropout,
ffn_dropout=ffn_dropout,
transformer_norm_layer=transformer_norm_layer)
for block_idx in range(n_transformer_blocks)
]
global_rep.append(transformer_norm_layer(transformer_dim))
self.global_rep = nn.Sequential(*global_rep)
self.conv_proj = conv_1x1_out
self.fusion = conv_3x3_out
self.patch_h = patch_h
self.patch_w = patch_w
self.patch_area = self.patch_w * self.patch_h
self.cnn_in_dim = in_channels
self.cnn_out_dim = transformer_dim
self.n_heads = num_heads
self.ffn_dim = ffn_dim
self.dropout = dropout
self.attn_dropout = attn_dropout
self.ffn_dropout = ffn_dropout
self.dilation = dilation
self.ffn_max_dim = ffn_dims[0]
self.ffn_min_dim = ffn_dims[-1]
self.var_ffn = var_ffn
self.n_blocks = n_transformer_blocks
self.conv_ksize = conv_ksize
def unfolding(self, feature_map):
patch_w, patch_h = self.patch_w, self.patch_h
patch_area = int(patch_w * patch_h)
batch_size, in_channels, orig_h, orig_w = feature_map.shape
new_h = int(math.ceil(orig_h / self.patch_h) * self.patch_h)
new_w = int(math.ceil(orig_w / self.patch_w) * self.patch_w)
interpolate = False
if new_w != orig_w or new_h != orig_h:
# Note: Padding can be done, but then it needs to be handled in attention function.
feature_map = F.interpolate(
feature_map,
size=(new_h, new_w),
mode="bilinear",
align_corners=False)
interpolate = True
# number of patches along width and height
num_patch_w = new_w // patch_w # n_w
num_patch_h = new_h // patch_h # n_h
num_patches = num_patch_h * num_patch_w # N
# [B, C, H, W] --> [B * C * n_h, p_h, n_w, p_w]
reshaped_fm = feature_map.reshape([
batch_size * in_channels * num_patch_h, patch_h, num_patch_w,
patch_w
])
# [B * C * n_h, p_h, n_w, p_w] --> [B * C * n_h, n_w, p_h, p_w]
transposed_fm = reshaped_fm.transpose([0, 2, 1, 3])
# [B * C * n_h, n_w, p_h, p_w] --> [B, C, N, P] where P = p_h * p_w and N = n_h * n_w
reshaped_fm = transposed_fm.reshape(
[batch_size, in_channels, num_patches, patch_area])
# [B, C, N, P] --> [B, P, N, C]
transposed_fm = reshaped_fm.transpose([0, 3, 2, 1])
# [B, P, N, C] --> [BP, N, C]
patches = transposed_fm.reshape(
[batch_size * patch_area, num_patches, -1])
info_dict = {
"orig_size": (orig_h, orig_w),
"batch_size": batch_size,
"interpolate": interpolate,
"total_patches": num_patches,
"num_patches_w": num_patch_w,
"num_patches_h": num_patch_h
}
return patches, info_dict
def folding(self, patches, info_dict):
n_dim = patches.dim()
assert n_dim == 3, "Tensor should be of shape BPxNxC. Got: {}".format(
patches.shape)
# [BP, N, C] --> [B, P, N, C]
patches = patches.reshape([
info_dict["batch_size"], self.patch_area,
info_dict["total_patches"], -1
])
batch_size, pixels, num_patches, channels = patches.shape
num_patch_h = info_dict["num_patches_h"]
num_patch_w = info_dict["num_patches_w"]
# [B, P, N, C] --> [B, C, N, P]
patches = patches.transpose([0, 3, 2, 1])
# [B, C, N, P] --> [B*C*n_h, n_w, p_h, p_w]
feature_map = patches.reshape([
batch_size * channels * num_patch_h, num_patch_w, self.patch_h,
self.patch_w
])
# [B*C*n_h, n_w, p_h, p_w] --> [B*C*n_h, p_h, n_w, p_w]
feature_map = feature_map.transpose([0, 2, 1, 3])
# [B*C*n_h, p_h, n_w, p_w] --> [B, C, H, W]
feature_map = feature_map.reshape([
batch_size, channels, num_patch_h * self.patch_h,
num_patch_w * self.patch_w
])
if info_dict["interpolate"]:
feature_map = F.interpolate(
feature_map,
size=info_dict["orig_size"],
mode="bilinear",
align_corners=False)
return feature_map
def forward(self, x):
res = x
# For MobileViTv3: Normal 3x3 convolution --> Depthwise 3x3 convolution
fm_conv = self.local_rep(x)
# convert feature map to patches
patches, info_dict = self.unfolding(fm_conv)
# learn global representations
patches = self.global_rep(patches)
# [B x Patch x Patches x C] --> [B x C x Patches x Patch]
fm = self.folding(patches=patches, info_dict=info_dict)
fm = self.conv_proj(fm)
if self.fusion is not None:
# For MobileViTv3: input+global --> local+global
fm = self.fusion(paddle.concat((fm_conv, fm), axis=1))
# For MobileViTv3: Skip connection
fm = fm + res
return fm
class LinearSelfAttention(nn.Layer):
def __init__(self, embed_dim, attn_dropout=0.0, bias=True):
super().__init__()
self.qkv_proj = nn.Conv2D(
embed_dim, 1 + (2 * embed_dim), 1, bias_attr=bias)
self.attn_dropout = nn.Dropout(p=attn_dropout)
self.out_proj = nn.Conv2D(embed_dim, embed_dim, 1, bias_attr=bias)
def forward(self, x):
# [B, C, P, N] --> [B, h + 2d, P, N]
qkv = self.qkv_proj(x)
# Project x into query, key and value
# Query --> [B, 1, P, N]
# value, key --> [B, d, P, N]
query, key, value = paddle.split(
qkv, [1, self.embed_dim, self.embed_dim], axis=1)
# apply softmax along N dimension
context_scores = F.softmax(query, axis=-1)
# Uncomment below line to visualize context scores
# self.visualize_context_scores(context_scores=context_scores)
context_scores = self.attn_dropout(context_scores)
# Compute context vector
# [B, d, P, N] x [B, 1, P, N] -> [B, d, P, N]
context_vector = key * context_scores
# [B, d, P, N] --> [B, d, P, 1]
context_vector = paddle.sum(context_vector, axis=-1, keepdim=True)
# combine context vector with values
# [B, d, P, N] * [B, d, P, 1] --> [B, d, P, N]
out = F.relu(value) * context_vector.expand_as(value)
out = self.out_proj(out)
return out
class LinearAttnFFN(nn.Layer):
def __init__(self,
embed_dim: int,
ffn_latent_dim: int,
attn_dropout: Optional[float]=0.0,
dropout: Optional[float]=0.1,
ffn_dropout: Optional[float]=0.0,
norm_layer: Optional[str]=layer_norm_2d) -> None:
super().__init__()
attn_unit = LinearSelfAttention(
embed_dim=embed_dim, attn_dropout=attn_dropout, bias=True)
self.pre_norm_attn = nn.Sequential(
norm_layer(num_channels=embed_dim),
attn_unit,
nn.Dropout(p=dropout))
self.pre_norm_ffn = nn.Sequential(
norm_layer(num_channels=embed_dim),
nn.Conv2D(embed_dim, ffn_latent_dim, 1),
nn.Silu(),
nn.Dropout(p=ffn_dropout),
nn.Conv2D(ffn_latent_dim, embed_dim, 1),
nn.Dropout(p=dropout))
def forward(self, x):
# self-attention
x = x + self.pre_norm_attn(x)
# Feed forward network
x = x + self.pre_norm_ffn(x)
return x
class MobileViTv3Block_v2(nn.Layer):
"""
This class defines the `MobileViTv3 block`
"""
def __init__(self,
in_channels: int,
attn_unit_dim: int,
ffn_multiplier: float=2.0,
n_attn_blocks: Optional[int]=2,
attn_dropout: Optional[float]=0.0,
dropout: Optional[float]=0.0,
ffn_dropout: Optional[float]=0.0,
patch_h: Optional[int]=8,
patch_w: Optional[int]=8,
conv_ksize: Optional[int]=3,
dilation: Optional[int]=1,
attn_norm_layer: Optional[str]=layer_norm_2d):
cnn_out_dim = attn_unit_dim
padding = (conv_ksize - 1) // 2 * dilation
conv_3x3_in = nn.Sequential(
('conv', nn.Conv2D(
in_channels,
in_channels,
conv_ksize,
bias_attr=False,
padding=padding,
dilation=dilation,
groups=in_channels)), ('norm', nn.BatchNorm2D(in_channels)),
('act', nn.Silu()))
conv_1x1_in = nn.Sequential(('conv', nn.Conv2D(
in_channels, cnn_out_dim, 1, bias_attr=False)))
super().__init__()
self.local_rep = nn.Sequential(conv_3x3_in, conv_1x1_in)
self.global_rep, attn_unit_dim = self._build_attn_layer(
d_model=attn_unit_dim,
ffn_mult=ffn_multiplier,
n_layers=n_attn_blocks,
attn_dropout=attn_dropout,
dropout=dropout,
ffn_dropout=ffn_dropout,
attn_norm_layer=attn_norm_layer)
# MobileViTv3: input changed from just global to local+global
self.conv_proj = nn.Sequential(
('conv', nn.Conv2D(
2 * cnn_out_dim, in_channels, 1, bias_attr=False)),
('norm', nn.BatchNorm2D(in_channels)))
self.patch_h = patch_h
self.patch_w = patch_w
def _build_attn_layer(self,
d_model: int,
ffn_mult: float,
n_layers: int,
attn_dropout: float,
dropout: float,
ffn_dropout: float,
attn_norm_layer: nn.Layer):
# ensure that dims are multiple of 16
ffn_dims = [ffn_mult * d_model // 16 * 16] * n_layers
global_rep = [
LinearAttnFFN(
embed_dim=d_model,
ffn_latent_dim=ffn_dims[block_idx],
attn_dropout=attn_dropout,
dropout=dropout,
ffn_dropout=ffn_dropout,
norm_layer=attn_norm_layer) for block_idx in range(n_layers)
]
global_rep.append(attn_norm_layer(num_channels=d_model))
return nn.Sequential(*global_rep), d_model
def unfolding(self, feature_map):
batch_size, in_channels, img_h, img_w = feature_map.shape
# [B, C, H, W] --> [B, C, P, N]
patches = F.unfold(
feature_map,
kernel_sizes=(self.patch_h, self.patch_w),
stride=(self.patch_h, self.patch_w))
patches = patches.reshape(
[batch_size, in_channels, self.patch_h * self.patch_w, -1])
return patches, (img_h, img_w)
def folding(self, patches, output_size: Tuple[int, int]):
batch_size, in_dim, patch_size, n_patches = patches.shape
# [B, C, P, N]
patches = patches.reshape([batch_size, in_dim * patch_size, n_patches])
feature_map = F.fold(
patches,
output_sizes=output_size,
kernel_sizes=(self.patch_h, self.patch_w),
stride=(self.patch_h, self.patch_w))
return feature_map
def forward(self, x):
fm_conv = self.local_rep(x)
# convert feature map to patches
patches, output_size = self.unfolding(fm_conv)
# learn global representations on all patches
patches = self.global_rep(patches)
# [B x Patch x Patches x C] --> [B x C x Patches x Patch]
fm = self.folding(patches=patches, output_size=output_size)
# MobileViTv3: local+global instead of only global
fm = self.conv_proj(paddle.concat((fm, fm_conv), axis=1))
# MobileViTv3: skip connection
fm = fm + x
return fm
class MobileViTv3(nn.Layer):
"""
MobileViTv3:
"""
def __init__(self,
mobilevit_config: Dict,
dropout=0.1,
class_num=1000,
classifier_dropout=0.1,
output_stride=None,
mobilevit_v2_based=False):
super().__init__()
self.round_nearest = 8
self.dilation = 1
self.dropout = dropout
self.mobilevit_v2_based = mobilevit_v2_based
dilate_l4 = dilate_l5 = False
if output_stride == 8:
dilate_l4 = True
dilate_l5 = True
elif output_stride == 16:
dilate_l5 = True
# store model configuration in a dictionary
in_channels = mobilevit_config["layer0"]["img_channels"]
out_channels = mobilevit_config["layer0"]["out_channels"]
self.conv_1 = nn.Sequential(
('conv', nn.Conv2D(
in_channels,
out_channels,
3,
bias_attr=False,
stride=2,
padding=1)), ('norm', nn.BatchNorm2D(out_channels)),
('act', nn.Silu()))
in_channels = out_channels
self.layer_1, out_channels = self._make_layer(
input_channel=in_channels, cfg=mobilevit_config["layer1"])
in_channels = out_channels
self.layer_2, out_channels = self._make_layer(
input_channel=in_channels, cfg=mobilevit_config["layer2"])
in_channels = out_channels
self.layer_3, out_channels = self._make_layer(
input_channel=in_channels, cfg=mobilevit_config["layer3"])
in_channels = out_channels
self.layer_4, out_channels = self._make_layer(
input_channel=in_channels,
cfg=mobilevit_config["layer4"],
dilate=dilate_l4)
in_channels = out_channels
self.layer_5, out_channels = self._make_layer(
input_channel=in_channels,
cfg=mobilevit_config["layer5"],
dilate=dilate_l5)
in_channels = out_channels
exp_channels = min(mobilevit_config["last_layer_exp_factor"] *
in_channels, 960)
if self.mobilevit_v2_based:
self.conv_1x1_exp = nn.Identity()
else:
self.conv_1x1_exp = nn.Sequential(
('conv', nn.Conv2D(
in_channels, exp_channels, 1, bias_attr=False)),
('norm', nn.BatchNorm2D(exp_channels)), ('act', nn.Silu()))
self.classifier = nn.Sequential()
self.classifier.add_sublayer(
name="global_pool",
sublayer=nn.Sequential(nn.AdaptiveAvgPool2D(1), nn.Flatten()))
if 0.0 < classifier_dropout < 1.0:
self.classifier.add_sublayer(
name="dropout", sublayer=nn.Dropout(p=classifier_dropout))
self.classifier.add_sublayer(
name="fc", sublayer=nn.Linear(exp_channels, class_num))
# weight initialization
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Conv2D):
fan_out = m.weight.shape[0] * m.weight.shape[2] * m.weight.shape[3]
nn.initializer.KaimingNormal(fan_in=fan_out)(m.weight)
if m.bias is not None:
nn.initializer.Constant(0)(m.bias)
elif isinstance(m, nn.BatchNorm2D):
nn.initializer.Constant(1)(m.weight)
nn.initializer.Constant(0)(m.bias)
elif isinstance(m, nn.Linear):
nn.initializer.TruncatedNormal(std=.02)(m.weight)
if m.bias is not None:
nn.initializer.Constant(0)(m.bias)
def _make_layer(self, input_channel, cfg, dilate=False):
block_type = cfg.get("block_type", "mobilevit")
if block_type.lower() == "mobilevit":
return self._make_mit_layer(
input_channel=input_channel, cfg=cfg, dilate=dilate)
else:
return self._make_mobilenet_layer(
input_channel=input_channel, cfg=cfg)
def _make_mit_layer(self, input_channel, cfg, dilate=False):
prev_dilation = self.dilation
block = []
stride = cfg.get("stride", 1)
if stride == 2:
if dilate:
self.dilation *= 2
stride = 1
layer = InvertedResidual(
in_channels=input_channel,
out_channels=cfg.get("out_channels"),
stride=stride,
expand_ratio=cfg.get("mv_expand_ratio", 4),
dilation=prev_dilation)
block.append(layer)
input_channel = cfg.get("out_channels")
if self.mobilevit_v2_based:
block.append(
MobileViTv3Block_v2(
in_channels=input_channel,
attn_unit_dim=cfg["attn_unit_dim"],
ffn_multiplier=cfg.get("ffn_multiplier"),
n_attn_blocks=cfg.get("attn_blocks", 1),
ffn_dropout=0.,
attn_dropout=0.,
dilation=self.dilation,
patch_h=cfg.get("patch_h", 2),
patch_w=cfg.get("patch_w", 2)))
else:
head_dim = cfg.get("head_dim", 32)
transformer_dim = cfg["transformer_channels"]
ffn_dim = cfg.get("ffn_dim")
if head_dim is None:
num_heads = cfg.get("num_heads", 4)
if num_heads is None:
num_heads = 4
head_dim = transformer_dim // num_heads
assert transformer_dim % head_dim == 0, (
"Transformer input dimension should be divisible by head dimension. "
"Got {} and {}.".format(transformer_dim, head_dim))
block.append(
MobileViTv3Block(
in_channels=input_channel,
transformer_dim=transformer_dim,
ffn_dim=ffn_dim,
n_transformer_blocks=cfg.get("transformer_blocks", 1),
patch_h=cfg.get("patch_h", 2),
patch_w=cfg.get("patch_w", 2),
dropout=self.dropout,
ffn_dropout=0.,
attn_dropout=0.,
head_dim=head_dim))
return nn.Sequential(*block), input_channel
def _make_mobilenet_layer(self, input_channel, cfg):
output_channels = cfg.get("out_channels")
num_blocks = cfg.get("num_blocks", 2)
expand_ratio = cfg.get("expand_ratio", 4)
block = []
for i in range(num_blocks):
stride = cfg.get("stride", 1) if i == 0 else 1
layer = InvertedResidual(
in_channels=input_channel,
out_channels=output_channels,
stride=stride,
expand_ratio=expand_ratio)
block.append(layer)
input_channel = output_channels
return nn.Sequential(*block), input_channel
def extract_features(self, x):
x = self.conv_1(x)
x = self.layer_1(x)
x = self.layer_2(x)
x = self.layer_3(x)
x = self.layer_4(x)
x = self.layer_5(x)
x = self.conv_1x1_exp(x)
return x
def forward(self, x):
x = self.extract_features(x)
x = self.classifier(x)
return x
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
if pretrained is False:
pass
elif pretrained is True:
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
elif isinstance(pretrained, str):
load_dygraph_pretrain(model, pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type."
)
def MobileViTv3_S(pretrained=False, use_ssld=False, **kwargs):
mv2_exp_mult = 4
mobilevit_config = {
"layer0": {
"img_channels": 3,
"out_channels": 16,
},
"layer1": {
"out_channels": 32,
"expand_ratio": mv2_exp_mult,
"num_blocks": 1,
"stride": 1,
"block_type": "mv2"
},
"layer2": {
"out_channels": 64,
"expand_ratio": mv2_exp_mult,
"num_blocks": 3,
"stride": 2,
"block_type": "mv2"
},
"layer3": { # 28x28
"out_channels": 128,
"transformer_channels": 144,
"ffn_dim": 288,
"transformer_blocks": 2,
"patch_h": 2,
"patch_w": 2,
"stride": 2,
"mv_expand_ratio": mv2_exp_mult,
"head_dim": None,
"num_heads": 4,
"block_type": "mobilevit"
},
"layer4": { # 14x14
"out_channels": 256,
"transformer_channels": 192,
"ffn_dim": 384,
"transformer_blocks": 4,
"patch_h": 2,
"patch_w": 2,
"stride": 2,
"mv_expand_ratio": mv2_exp_mult,
"head_dim": None,
"num_heads": 4,
"block_type": "mobilevit"
},
"layer5": { # 7x7
"out_channels": 320,
"transformer_channels": 240,
"ffn_dim": 480,
"transformer_blocks": 3,
"patch_h": 2,
"patch_w": 2,
"stride": 2,
"mv_expand_ratio": mv2_exp_mult,
"head_dim": None,
"num_heads": 4,
"block_type": "mobilevit"
},
"last_layer_exp_factor": 4
}
model = MobileViTv3(mobilevit_config, **kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["MobileViTv3_S"], use_ssld=use_ssld)
return model
def MobileViTv3_XS(pretrained=False, use_ssld=False, **kwargs):
mv2_exp_mult = 4
mobilevit_config = {
"layer0": {
"img_channels": 3,
"out_channels": 16,
},
"layer1": {
"out_channels": 32,
"expand_ratio": mv2_exp_mult,
"num_blocks": 1,
"stride": 1,
"block_type": "mv2"
},
"layer2": {
"out_channels": 48,
"expand_ratio": mv2_exp_mult,
"num_blocks": 3,
"stride": 2,
"block_type": "mv2"
},
"layer3": { # 28x28
"out_channels": 96,
"transformer_channels": 96,
"ffn_dim": 192,
"transformer_blocks": 2,
"patch_h": 2,
"patch_w": 2,
"stride": 2,
"mv_expand_ratio": mv2_exp_mult,
"head_dim": None,
"num_heads": 4,
"block_type": "mobilevit"
},
"layer4": { # 14x14
"out_channels": 160,
"transformer_channels": 120,
"ffn_dim": 240,
"transformer_blocks": 4,
"patch_h": 2,
"patch_w": 2,
"stride": 2,
"mv_expand_ratio": mv2_exp_mult,
"head_dim": None,
"num_heads": 4,
"block_type": "mobilevit"
},
"layer5": { # 7x7
"out_channels": 160,
"transformer_channels": 144,
"ffn_dim": 288,
"transformer_blocks": 3,
"patch_h": 2,
"patch_w": 2,
"stride": 2,
"mv_expand_ratio": mv2_exp_mult,
"head_dim": None,
"num_heads": 4,
"block_type": "mobilevit"
},
"last_layer_exp_factor": 4
}
model = MobileViTv3(mobilevit_config, **kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["MobileViTv3_XS"], use_ssld=use_ssld)
return model
def MobileViTv3_XXS(pretrained=False, use_ssld=False, **kwargs):
mv2_exp_mult = 2
mobilevit_config = {
"layer0": {
"img_channels": 3,
"out_channels": 16,
},
"layer1": {
"out_channels": 16,
"expand_ratio": mv2_exp_mult,
"num_blocks": 1,
"stride": 1,
"block_type": "mv2"
},
"layer2": {
"out_channels": 24,
"expand_ratio": mv2_exp_mult,
"num_blocks": 3,
"stride": 2,
"block_type": "mv2"
},
"layer3": { # 28x28
"out_channels": 64,
"transformer_channels": 64,
"ffn_dim": 128,
"transformer_blocks": 2,
"patch_h": 2,
"patch_w": 2,
"stride": 2,
"mv_expand_ratio": mv2_exp_mult,
"head_dim": None,
"num_heads": 4,
"block_type": "mobilevit"
},
"layer4": { # 14x14
"out_channels": 80,
"transformer_channels": 80,
"ffn_dim": 160,
"transformer_blocks": 4,
"patch_h": 2,
"patch_w": 2,
"stride": 2,
"mv_expand_ratio": mv2_exp_mult,
"head_dim": None,
"num_heads": 4,
"block_type": "mobilevit"
},
"layer5": { # 7x7
"out_channels": 128,
"transformer_channels": 96,
"ffn_dim": 192,
"transformer_blocks": 3,
"patch_h": 2,
"patch_w": 2,
"stride": 2,
"mv_expand_ratio": mv2_exp_mult,
"head_dim": None,
"num_heads": 4,
"block_type": "mobilevit"
},
"last_layer_exp_factor": 4
}
model = MobileViTv3(mobilevit_config, **kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["MobileViTv3_XXS"], use_ssld=use_ssld)
return model
def MobileViTv3_x1_0(pretrained=False, use_ssld=False, **kwargs):
mobilevit_config = {
"layer0": {
"img_channels": 3,
"out_channels": 32,
},
"layer1": {
"out_channels": 64,
"expand_ratio": 2,
"num_blocks": 1,
"stride": 1,
"block_type": "mv2",
},
"layer2": {
"out_channels": 128,
"expand_ratio": 2,
"num_blocks": 2,
"stride": 2,
"block_type": "mv2",
},
"layer3": { # 28x28
"out_channels": 256,
"attn_unit_dim": 128,
"ffn_multiplier": 2,
"attn_blocks": 2,
"patch_h": 2,
"patch_w": 2,
"stride": 2,
"mv_expand_ratio": 2,
"block_type": "mobilevit",
},
"layer4": { # 14x14
"out_channels": 384,
"attn_unit_dim": 192,
"ffn_multiplier": 2,
"attn_blocks": 4,
"patch_h": 2,
"patch_w": 2,
"stride": 2,
"mv_expand_ratio": 2,
"block_type": "mobilevit",
},
"layer5": { # 7x7
"out_channels": 512,
"attn_unit_dim": 256,
"ffn_multiplier": 2,
"attn_blocks": 3,
"patch_h": 2,
"patch_w": 2,
"stride": 2,
"mv_expand_ratio": 2,
"block_type": "mobilevit",
},
"last_layer_exp_factor": 4,
}
model = MobileViTv3(mobilevit_config, mobilevit_v2_based=True, **kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["MobileViTv3_x1_0"], use_ssld=use_ssld)
return model
def MobileViTv3_x0_75(pretrained=False, use_ssld=False, **kwargs):
mobilevit_config = {
"layer0": {
"img_channels": 3,
"out_channels": 24,
},
"layer1": {
"out_channels": 48,
"expand_ratio": 2,
"num_blocks": 1,
"stride": 1,
"block_type": "mv2",
},
"layer2": {
"out_channels": 96,
"expand_ratio": 2,
"num_blocks": 2,
"stride": 2,
"block_type": "mv2",
},
"layer3": { # 28x28
"out_channels": 192,
"attn_unit_dim": 96,
"ffn_multiplier": 2,
"attn_blocks": 2,
"patch_h": 2,
"patch_w": 2,
"stride": 2,
"mv_expand_ratio": 2,
"block_type": "mobilevit",
},
"layer4": { # 14x14
"out_channels": 288,
"attn_unit_dim": 144,
"ffn_multiplier": 2,
"attn_blocks": 4,
"patch_h": 2,
"patch_w": 2,
"stride": 2,
"mv_expand_ratio": 2,
"block_type": "mobilevit",
},
"layer5": { # 7x7
"out_channels": 384,
"attn_unit_dim": 192,
"ffn_multiplier": 2,
"attn_blocks": 3,
"patch_h": 2,
"patch_w": 2,
"stride": 2,
"mv_expand_ratio": 2,
"block_type": "mobilevit",
},
"last_layer_exp_factor": 4,
}
model = MobileViTv3(mobilevit_config, mobilevit_v2_based=True, **kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["MobileViTv3_x0_75"], use_ssld=use_ssld)
return model
def MobileViTv3_x0_5(pretrained=False, use_ssld=False, **kwargs):
mobilevit_config = {
"layer0": {
"img_channels": 3,
"out_channels": 16,
},
"layer1": {
"out_channels": 32,
"expand_ratio": 2,
"num_blocks": 1,
"stride": 1,
"block_type": "mv2",
},
"layer2": {
"out_channels": 64,
"expand_ratio": 2,
"num_blocks": 2,
"stride": 2,
"block_type": "mv2",
},
"layer3": { # 28x28
"out_channels": 128,
"attn_unit_dim": 64,
"ffn_multiplier": 2,
"attn_blocks": 2,
"patch_h": 2,
"patch_w": 2,
"stride": 2,
"mv_expand_ratio": 2,
"block_type": "mobilevit",
},
"layer4": { # 14x14
"out_channels": 192,
"attn_unit_dim": 96,
"ffn_multiplier": 2,
"attn_blocks": 4,
"patch_h": 2,
"patch_w": 2,
"stride": 2,
"mv_expand_ratio": 2,
"block_type": "mobilevit",
},
"layer5": { # 7x7
"out_channels": 256,
"attn_unit_dim": 128,
"ffn_multiplier": 2,
"attn_blocks": 3,
"patch_h": 2,
"patch_w": 2,
"stride": 2,
"mv_expand_ratio": 2,
"block_type": "mobilevit",
},
"last_layer_exp_factor": 4,
}
model = MobileViTv3(mobilevit_config, mobilevit_v2_based=True, **kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["MobileViTv3_x0_5"], use_ssld=use_ssld)
return model